mne.
Covariance
(data, names, bads, projs, nfree, eig=None, eigvec=None, method=None, loglik=None)[source]¶Noise covariance matrix.
Warning
This class should not be instantiated directly, but instead should be created using a covariance reading or computation function.
Parameters: |
|
---|
Attributes: |
---|
Methods
__add__ (cov) |
Add Covariance taking into account number of degrees of freedom. |
__contains__ ($self, key, /) |
True if the dictionary has the specified key, else False. |
__getitem__ |
x.__getitem__(y) <==> x[y] |
__iter__ ($self, /) |
Implement iter(self). |
__len__ ($self, /) |
Return len(self). |
as_diag () |
Set covariance to be processed as being diagonal. |
clear () |
|
copy () |
Copy the Covariance object. |
fromkeys ($type, iterable[, value]) |
Create a new dictionary with keys from iterable and values set to value. |
get ($self, key[, default]) |
Return the value for key if key is in the dictionary, else default. |
items () |
|
keys () |
|
plot (info[, exclude, colorbar, proj, …]) |
Plot Covariance data. |
pop (k[,d]) |
If key is not found, d is returned if given, otherwise KeyError is raised |
popitem () |
2-tuple; but raise KeyError if D is empty. |
save (fname) |
Save covariance matrix in a FIF file. |
setdefault ($self, key[, default]) |
Insert key with a value of default if key is not in the dictionary. |
update ([E, ]**F) |
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] |
values () |
__contains__
($self, key, /)¶True if the dictionary has the specified key, else False.
__getitem__
()¶x.__getitem__(y) <==> x[y]
__iter__
($self, /)¶Implement iter(self).
__len__
($self, /)¶Return len(self).
as_diag
()[source]¶Set covariance to be processed as being diagonal.
Returns: |
|
---|
Notes
This function allows creation of inverse operators equivalent to using the old “–diagnoise” mne option.
ch_names
¶Channel names.
clear
() → None. Remove all items from D.¶copy
()[source]¶Copy the Covariance object.
Returns: |
|
---|
data
¶Numpy array of Noise covariance matrix.
fromkeys
($type, iterable, value=None, /)¶Create a new dictionary with keys from iterable and values set to value.
get
($self, key, default=None, /)¶Return the value for key if key is in the dictionary, else default.
items
() → a set-like object providing a view on D's items¶keys
() → a set-like object providing a view on D's keys¶nfree
¶Number of degrees of freedom.
plot
(info, exclude=[], colorbar=True, proj=False, show_svd=True, show=True, verbose=None)[source]¶Plot Covariance data.
Parameters: |
|
---|---|
Returns: |
|
pop
(k[, d]) → v, remove specified key and return the corresponding value.¶If key is not found, d is returned if given, otherwise KeyError is raised
popitem
() → (k, v), remove and return some (key, value) pair as a¶2-tuple; but raise KeyError if D is empty.
setdefault
($self, key, default=None, /)¶Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update
([E, ]**F) → None. Update D from dict/iterable E and F.¶If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
() → an object providing a view on D's values¶