mne.time_frequency.
tfr_array_stockwell
(data, sfreq, fmin=None, fmax=None, n_fft=None, width=1.0, decim=1, return_itc=False, n_jobs=1)[source]¶Compute power and intertrial coherence using Stockwell (S) transform.
See [1], [2], [3], [4] for more information.
Parameters: |
|
---|---|
Returns: |
|
See also
mne.time_frequency.tfr_stockwell
, mne.time_frequency.tfr_multitaper
, mne.time_frequency.tfr_array_multitaper
, mne.time_frequency.tfr_morlet
, mne.time_frequency.tfr_array_morlet
References
[1] | (1, 2) Stockwell, R. G. “Why use the S-transform.” AMS Pseudo-differential operators: Partial differential equations and time-frequency analysis 52 (2007): 279-309. |
[2] | (1, 2) Moukadem, A., Bouguila, Z., Abdeslam, D. O, and Dieterlen, A. Stockwell transform optimization applied on the detection of split in heart sounds (2014). Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 22nd European, pages 2015–2019. |
[3] | (1, 2) Wheat, K., Cornelissen, P. L., Frost, S.J, and Peter C. Hansen (2010). During Visual Word Recognition, Phonology Is Accessed within 100 ms and May Be Mediated by a Speech Production Code: Evidence from Magnetoencephalography. The Journal of Neuroscience, 30 (15), 5229-5233. |
[4] | (1, 2) K. A. Jones and B. Porjesz and D. Chorlian and M. Rangaswamy and C. Kamarajan and A. Padmanabhapillai and A. Stimus and H. Begleiter (2006). S-transform time-frequency analysis of P300 reveals deficits in individuals diagnosed with alcoholism. Clinical Neurophysiology 117 2128–2143 |