Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.5s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  3%|▎         | Fitting GeneralizingEstimator : 1/35 [00:00<00:01,   29.23it/s]
 11%|█▏        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   59.25it/s]
 17%|█▋        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   59.28it/s]
 26%|██▌       | Fitting GeneralizingEstimator : 9/35 [00:00<00:00,   67.09it/s]
 34%|███▍      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   71.89it/s]
 46%|████▌     | Fitting GeneralizingEstimator : 16/35 [00:00<00:00,   80.44it/s]
 54%|█████▍    | Fitting GeneralizingEstimator : 19/35 [00:00<00:00,   81.83it/s]
 63%|██████▎   | Fitting GeneralizingEstimator : 22/35 [00:00<00:00,   82.89it/s]
 71%|███████▏  | Fitting GeneralizingEstimator : 25/35 [00:00<00:00,   83.71it/s]
 80%|████████  | Fitting GeneralizingEstimator : 28/35 [00:00<00:00,   84.27it/s]
 86%|████████▌ | Fitting GeneralizingEstimator : 30/35 [00:00<00:00,   81.39it/s]
 94%|█████████▍| Fitting GeneralizingEstimator : 33/35 [00:00<00:00,   82.22it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   83.01it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 14/1225 [00:00<00:02,  404.83it/s]
  3%|▎         | Scoring GeneralizingEstimator : 31/1225 [00:00<00:02,  453.10it/s]
  4%|▍         | Scoring GeneralizingEstimator : 48/1225 [00:00<00:02,  470.15it/s]
  5%|▌         | Scoring GeneralizingEstimator : 63/1225 [00:00<00:02,  461.81it/s]
  6%|▌         | Scoring GeneralizingEstimator : 73/1225 [00:00<00:02,  425.17it/s]
  7%|▋         | Scoring GeneralizingEstimator : 88/1225 [00:00<00:02,  428.57it/s]
  9%|▊         | Scoring GeneralizingEstimator : 106/1225 [00:00<00:02,  444.75it/s]
 10%|█         | Scoring GeneralizingEstimator : 123/1225 [00:00<00:02,  453.39it/s]
 11%|█▏        | Scoring GeneralizingEstimator : 140/1225 [00:00<00:02,  460.10it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 157/1225 [00:00<00:02,  464.85it/s]
 14%|█▍        | Scoring GeneralizingEstimator : 175/1225 [00:00<00:02,  472.02it/s]
 16%|█▌        | Scoring GeneralizingEstimator : 192/1225 [00:00<00:02,  474.94it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 209/1225 [00:00<00:02,  477.84it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 226/1225 [00:00<00:02,  480.39it/s]
 20%|█▉        | Scoring GeneralizingEstimator : 243/1225 [00:00<00:02,  482.15it/s]
 21%|██        | Scoring GeneralizingEstimator : 260/1225 [00:00<00:01,  483.90it/s]
 23%|██▎       | Scoring GeneralizingEstimator : 278/1225 [00:00<00:01,  487.99it/s]
 24%|██▍       | Scoring GeneralizingEstimator : 295/1225 [00:00<00:01,  489.13it/s]
 25%|██▌       | Scoring GeneralizingEstimator : 312/1225 [00:00<00:01,  490.07it/s]
 27%|██▋       | Scoring GeneralizingEstimator : 329/1225 [00:00<00:01,  490.59it/s]
 28%|██▊       | Scoring GeneralizingEstimator : 346/1225 [00:00<00:01,  491.53it/s]
 30%|██▉       | Scoring GeneralizingEstimator : 363/1225 [00:00<00:01,  492.47it/s]
 31%|███       | Scoring GeneralizingEstimator : 380/1225 [00:00<00:01,  493.20it/s]
 32%|███▏      | Scoring GeneralizingEstimator : 397/1225 [00:00<00:01,  493.91it/s]
 34%|███▍      | Scoring GeneralizingEstimator : 414/1225 [00:00<00:01,  494.57it/s]
 35%|███▌      | Scoring GeneralizingEstimator : 431/1225 [00:00<00:01,  495.15it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 448/1225 [00:00<00:01,  495.61it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 466/1225 [00:00<00:01,  497.92it/s]
 39%|███▉      | Scoring GeneralizingEstimator : 483/1225 [00:00<00:01,  498.28it/s]
 41%|████      | Scoring GeneralizingEstimator : 500/1225 [00:01<00:01,  498.66it/s]
 42%|████▏     | Scoring GeneralizingEstimator : 517/1225 [00:01<00:01,  498.65it/s]
 44%|████▎     | Scoring GeneralizingEstimator : 535/1225 [00:01<00:01,  500.43it/s]
 45%|████▌     | Scoring GeneralizingEstimator : 552/1225 [00:01<00:01,  500.66it/s]
 46%|████▋     | Scoring GeneralizingEstimator : 569/1225 [00:01<00:01,  500.87it/s]
 48%|████▊     | Scoring GeneralizingEstimator : 586/1225 [00:01<00:01,  500.88it/s]
 49%|████▉     | Scoring GeneralizingEstimator : 604/1225 [00:01<00:01,  502.69it/s]
 51%|█████     | Scoring GeneralizingEstimator : 621/1225 [00:01<00:01,  502.79it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 638/1225 [00:01<00:01,  502.78it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 655/1225 [00:01<00:01,  502.78it/s]
 55%|█████▍    | Scoring GeneralizingEstimator : 673/1225 [00:01<00:01,  504.47it/s]
 56%|█████▋    | Scoring GeneralizingEstimator : 690/1225 [00:01<00:01,  504.42it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 706/1225 [00:01<00:01,  502.73it/s]
 59%|█████▉    | Scoring GeneralizingEstimator : 722/1225 [00:01<00:01,  501.15it/s]
 60%|██████    | Scoring GeneralizingEstimator : 739/1225 [00:01<00:00,  501.29it/s]
 62%|██████▏   | Scoring GeneralizingEstimator : 757/1225 [00:01<00:00,  502.98it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 772/1225 [00:01<00:00,  499.77it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 783/1225 [00:01<00:00,  490.08it/s]
 65%|██████▍   | Scoring GeneralizingEstimator : 794/1225 [00:01<00:00,  480.75it/s]
 66%|██████▌   | Scoring GeneralizingEstimator : 806/1225 [00:01<00:00,  473.60it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 823/1225 [00:01<00:00,  475.23it/s]
 69%|██████▊   | Scoring GeneralizingEstimator : 841/1225 [00:01<00:00,  478.13it/s]
 70%|███████   | Scoring GeneralizingEstimator : 858/1225 [00:01<00:00,  479.29it/s]
 71%|███████▏  | Scoring GeneralizingEstimator : 875/1225 [00:01<00:00,  480.52it/s]
 73%|███████▎  | Scoring GeneralizingEstimator : 892/1225 [00:01<00:00,  481.71it/s]
 74%|███████▍  | Scoring GeneralizingEstimator : 909/1225 [00:01<00:00,  482.62it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 926/1225 [00:01<00:00,  483.61it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 943/1225 [00:01<00:00,  484.50it/s]
 78%|███████▊  | Scoring GeneralizingEstimator : 961/1225 [00:01<00:00,  486.70it/s]
 80%|███████▉  | Scoring GeneralizingEstimator : 978/1225 [00:02<00:00,  487.54it/s]
 81%|████████  | Scoring GeneralizingEstimator : 995/1225 [00:02<00:00,  488.18it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1012/1225 [00:02<00:00,  488.94it/s]
 84%|████████▍ | Scoring GeneralizingEstimator : 1029/1225 [00:02<00:00,  489.36it/s]
 85%|████████▌ | Scoring GeneralizingEstimator : 1047/1225 [00:02<00:00,  491.28it/s]
 87%|████████▋ | Scoring GeneralizingEstimator : 1064/1225 [00:02<00:00,  491.86it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1081/1225 [00:02<00:00,  492.46it/s]
 90%|████████▉ | Scoring GeneralizingEstimator : 1098/1225 [00:02<00:00,  493.06it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1115/1225 [00:02<00:00,  493.56it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1132/1225 [00:02<00:00,  493.96it/s]
 94%|█████████▍| Scoring GeneralizingEstimator : 1149/1225 [00:02<00:00,  494.44it/s]
 95%|█████████▌| Scoring GeneralizingEstimator : 1167/1225 [00:02<00:00,  496.11it/s]
 97%|█████████▋| Scoring GeneralizingEstimator : 1184/1225 [00:02<00:00,  496.52it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1201/1225 [00:02<00:00,  496.90it/s]
 99%|█████████▉| Scoring GeneralizingEstimator : 1218/1225 [00:02<00:00,  497.19it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  492.11it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 7.344 seconds)

Estimated memory usage: 129 MB

Gallery generated by Sphinx-Gallery