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ABSTRACT

Affine image registration is a cornerstone of medical image processing backed by decades of development. While
classical algorithms can achieve excellent accuracy, they solve a time-consuming optimization for every new image
pair. In contrast, deep-learning (DL) methods learn a function that maps an image pair to an output transform.
Evaluating the function is fast, but these methods tend to be susceptible to domain shift. A network trained on
a specific image type may perform poorly if an image characteristic changes at test time, such as the imaging
contrast or resolution. Secondly, many classical and DL registration algorithms cannot distinguish between
relevant and irrelevant anatomy: the global nature of the linear registration problem means that accuracy will
suffer if parts of the image deform independently. This is why neuroimage processing, for example, often starts
with brain extraction, to enhance the accuracy of brain-specific registration. We address these shortcomings of
linear registration by training deep neural networks using a generative strategy that synthesizes wildly varying
images from label maps. Optimizing label overlap decouples the loss from the image appearance, encouraging
network invariance to acquisition specifics. It also enables the registration model to distinguish between anatomy
of interest and irrelevant structures, which alleviates the need for segmenting images prior to registration to
remove distracting content. We test brain-specific registration across a variety of magnetic resonance imaging
protocols that approximate the diversity of real-world data, demonstrating consistent and improved accuracy
relative to state-of-the-art baselines. We freely distribute our easy-to-use tool at https://w3id.org/synthmorph.
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1. DESCRIPTION OF PURPOSE

Affine image registration is a cornerstone of medical image processing and analysis that estimates a linear
mapping from the anatomy in one image to the space of another.1–4 While classical registration has been
extensively studied and can achieve excellent accuracy, these algorithms solve a time-consuming optimization
problem for every new image pair.5–8 In contrast, deep learning (DL) methods learn a function that maps an
input image pair to an output transform. Evaluating this function is fast, but DL algorithms are typically limited
to registering images similar to the type of data seen at training.9–13 A network trained with magnetic resonance
imaging (MRI) data of T1-weighted (T1w) contrast, for example, will not accurately register T2-weighted (T2w)
images to proton-density-weighted (PDw) scans. Although one could include these data types in the training
set, the network would still not generalize to new contrast pairings unseen at training. Worse, even at similar
contrast, the domain shift caused by unseen noise or smoothness levels alone can reduce accuracy at test time.

Accurate alignment of specific anatomy of interest requires ignoring or down-weighting irrelevant image con-
tent. For example, the presence of neck and tongue tissue in MRI scans can reduce the accuracy of brain registra-
tion, because these structures can move independently of the brain and even deform non-linearly.14–16 However,
many existing classical and DL algorithms share an inability to focus the registration on specific anatomical
features,17 and therefore expect—and require—that irrelevant image content be removed from the input data for
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Figure 1. Training strategy. At each iteration, we augment a pair of moving and fixed label maps {sm, sf} and synthesize
images {m, f} from them. A 3D convolutional encoder predicts k = 64 ReLU-activated feature maps Fi (i ∈ {1, 2, ..., k})
for m, and separately for f . We compute their barycenters ai and bi, and total masses pi and qi, to fit the affine transform
T̂ that aligns these point sets in a weighted least-squares (WLS) sense, where X and y are the matrices whose ith rows
are (at

i 1) and bti, respectively. The Dice loss L recodes the labels in {sm, sf} to optimize the overlap of WM, GM, and
CSF. All convolutions except the last use 256 filters, LeakyReLU activation (α = 0.2), and kernel size 3 × 3 × 3. Blue
blocks smaller than their predecessor indicate subsampling by a factor of 2 via max pooling.

optimal performance.1,2, 4, 11,18,19 An exception are classical methods down-weighting the contribution of image
regions that do not transform linearly, by using iteratively re-weighted least squares (LS).4,6, 20–23

The purpose of our work is to address the data-type dependency of affine registration, to alleviate the need
for retraining affine networks for new image types and to remove the need for segmentation as a pre-processing
step to achieve anatomy-specific registration, such as skull-stripping24–27 in neuroimaging applications.

2. NEW OR BREAKTHROUGH WORK TO BE PRESENTED

Leveraging a recent strategy27–29 that trains networks with wildly variable synthetic data only, we present an
approach to producing powerful models for affine registration of real medical images. The synthesis of training
data from label maps enables use of a Dice-based loss decoupled from the image appearance, promoting network
invariance to acquisition specifics, for example MRI contrast and resolution. Importantly, optimizing the spatial
overlap of select anatomical labels makes the proposed network aware of the anatomy of interest, such that it will
focus on aligning brain tissue, keeping any non-brain signal from reducing brain-specific registration accuracy.

We freely distribute our easy-to-use registration tool and code at https://w3id.org/synthmorph and as the
command-line utility mri synthmorph within the upcoming FreeSurfer30 7.3.4 release. The research presented
is original and has not been submitted elsewhere.

3. METHOD

Let m and f be a moving and a fixed gray-scale image defined in N -dimensional (ND) space, respectively.
We train a deep neural registration network hθ with learnable parameters θ to predict an affine transform
Tθ = hθ(m, f) aligning {m, f} as shown in Figure 1.

We extend a recent strategy28,29 that synthesizes intentionally unrealistic images {m, f} from corresponding
label maps {sm, sf}. Let K be the complete set of labels in {sm, sf}. While we synthesize {m, f} using all labels
K, we encourage the network to register specific anatomy while ignoring irrelevant image content: we recode
{sm, sf} such that they include only select anatomical labels J ⊂ K, and optimize their overlap using a (soft)
Dice31 loss L, independent of image appearance:

L(Tθ, sm, sf ) = − 2

|J |
∑
j∈J

∑
x∈Ω

(sm
∣∣
j
◦ Tθ)(x)× sf

∣∣
j
(x)

(sm
∣∣
j
◦ Tθ)(x) + sf

∣∣
j
(x)

, (1)

where s
∣∣
j
is the one-hot encoded label j ∈ J of label map s defined at voxel locations x ∈ Ω, and the transform

Tθ : Ω → RN maps the discrete spatial domain Ω of image f onto m.
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3.1 Training-Data Synthesis

At each training iteration, we spatially augment a randomly drawn segmentation map sm by applying a non-
linear deformation including translation, rotation, scaling, and shear. The remainder of the image synthesis
builds heavily on our recent work on deformable registration:29 from sm, we generate gray-scale image m by
drawing a separate intensity for each label j ∈ {1, 2, ...,K} of sm, and we randomly corrupt the image with noise,
blurring, cropping, downsampling, a spatially varying intensity bias field, and gamma exponentiation. Similarly,
we synthesize image f from label map sf .

We sample the parameters governing the affine augmentation from noise distributions, within the ranges
defined in Table 1. We adapt all other synthesis hyperparameters from prior work,27,29 which thoroughly
analyzed their impact on registration accuracy.29 Figure 2 shows examples of typical synthetic training images.

3.2 Anatomy-Specific Registration

Our focus is on exploiting the synthesis strategy for anatomy-specific and acquisition-agnostic affine registration.
While other networks may be equally suitable, we chose an architecture19,32 that derives k learned features Fi

∣∣
m

(i ∈ {1, 2, ..., k}) from image m, and separately for image f , to fit a transform that aligns these features in a
LS sense.33–37 We extend prior work to predict a full affine transform19 and perform a weighted LS fit32 for
robustness. Briefly, we compute barycenter ai and channel mass pi for each predicted feature map Fi

∣∣
m

derived
from m,

ai = p−1
i

∑
x∈Ω

xFi

∣∣
m
(x) and pi =

∑
x∈Ω

Fi

∣∣
m
(x), (2)

and similarly barycenter bi and mass qi for each Fi

∣∣
f
of image f . Introducing the normalized weights

wi = pi
( k∑
j=1

pj
)−1

qi
( k∑
j=1

qj
)−1

, (3)

we interpret the sets {ai} and {bi} as corresponding moving and fixed point clouds and compute the transform
Tθ ∈ RN×(N+1) that aligns {ai} and {bi} in a LS sense, subject to

T̂θ = argmin
T

k∑
i=1

wi

∥∥ati − (bti 1)T t
∥∥2, (4)

where T t is the matrix transpose of T . Denoting W = diag({wi}), and by X and y the matrices whose ith rows
are (ati 1) and bti, respectively, the closed-form solution T̂θ of Equation (4) is

T̂ t
θ = (XtWX)−1XtWy. (5)

3.3 Implementation Details

The network hθ implements a fully convolutional feature detector that operates on a single image as shown in
Figure 1. This detector consists of eight 3D convolutional blocks with w = 256 filters each, whose outputs we
activate with LeakyReLU (parameter α = 0.2). A ninth convolutional block outputs k = 64 ReLU-activated
feature maps Fi (i ∈ {1, 2, ..., k}). We downsample the output of each of the first four blocks by a factor of 2 using
max-pooling. For computational efficiency, we also downsample the network inputs {m, f} by a factor of 2, all
while evaluating the loss on full-size segmentation maps {sm, sf}. All kernels are of size 3× 3× 3. We min-max
normalize the input images such that their intensities fall in the interval [0, 1]. We fit model parameters with
stochastic gradient descent using a learning rate of l = 10−5 and batch size 1 until the loss visually converges.

4. EXPERIMENT

While we train our network with intentionally unrealistic images generated from label maps, all tests use real
acquired 3D brain MRI scans. We compare classical and readily available deep-learning baselines trained by
their respective authors, to assess their generalization capabilities and to evaluate what level of accuracy the
interested reader can expect from off-the-shelf methods without retraining. Our network trained following the
synthesis strategy surpasses baseline accuracy even though it does not sample any real data at training.
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Figure 2. Left: synthetic training data generated from brain label maps. The images exceed the realistic range to promote
network generalization across acquisition protocols. All examples are based on the same label map. In practice, we use
data from several subjects. Right: representative 3D affine registration pairs showing the image moved by each method
overlaid with the fixed brain mask. Each row is an example from a different dataset. Subscripts indicate MRI contrast.

4.1 Data

We create a training set of 100 anatomical label maps derived from T1w FSM38 and OASIS39 data. The
evaluation set includes T1w, T2w, and PDw images from the GSP40 and IXI41 datasets. As all these images have
near-isotropic ∼1-mm voxels, we also add contrast-enhanced clinical stacks of T1w 6-mm slices from QIN42–44

subjects with glioblastoma. While users of our registration tool do not need to preprocess their data, we resample
and symmetrically crop and zero-pad all images to obtain volumes of 256 × 256 × 256 isotropic 1-mm voxels,
rearranged to produce left-inferior-anterior orientation of the brain relative to the volume axes. We skull-strip a
subset of these data with SynthStrip27 to compare registration performance after common preprocessing steps.

We derive brain labels for training and evaluation from each individual image using SynthSeg.28 To synthesize
diverse training-image content outside the labeled anatomy, we add non-brain labels using a simple thresholding
procedure.27 We sort non-zero image voxels outside the brain into one of six intensity bins, equalizing bin sizes
on a per-image basis. These six added labels do not necessarily represent meaningful anatomical structures but
expose the network to non-brain image content.

4.2 Setup

As illustrated in Figure 1, each training iteration generates input images from all K = 38 brain and non-brain
labels, including background, whereas training optimizes the overlap of three merged brain-tissue classes J ⊂ K
only: white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). These large labels ensure that small
structures like the caudate do not have a disproportionate influence on brain alignment. We test cross-subject
registration on 30 held-out image pairs for each of several data-type pairings and compare our strategy to popular
baselines. For each image pair, we measure brain registration accuracy by computing the mean Dice overlap D
between the moved label map sm ◦ Tθ and the fixed label map sf across classes J .

4.3 Baselines

We test classical affine registration with ANTs,7 using recommended parameters45 for the NCC metric within
and MI across MRI contrasts, and NiftyReg4 with the NMI metric. As an example of a method down-weighting
image regions which do not transform linearly, we run Robust Registration6 with its robust cost functions but
highlight that the cross-modal robust-entropy metric is deemed experimental. For a thorough comparison, we
initialize affine Robust Registration with a rigid run and use up to 100 iterations.

As DL baselines, we test original models pre-trained by the respective authors using skull-stripped T1-w
MRI. This analysis assesses the accuracy achievable without retraining. For reasons including the need for
recreating complex development environments and hardware availability, retraining is generally challenging for
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users, limiting the reusability of DL methods. We test KeyMorph,19 which uses an architecture similar to ours,
and the affine cascade of the pair-wise 10-cascade Volume Tweening Network11 (VTN). We choose the most recent
version of each package, ensuring that network inputs have the expected orientation and intensity normalization.

4.4 Results

Figure 3 compares registration accuracy measured as mean Dice scores over tissue classes J , and Figure 2
shows representative examples for each method and dataset. Despite not having access to real training images,
our strategy produces a network matching the best-performing baseline NiftyReg on skull-stripped data and
outperforming all baselines by 4.5–7.3 Dice points across all other data-type pairings. The NiftyReg performance
follows ours most closely, whereas the other baselines struggle at cross-contrast registration.

As expected, the baselines perform best on skull-stripped T1w images, because most cannot distinguish
between brain and non-brain tissue. The learning baselines break down for full-head images, which they did not
see at training. However, VTN’s accuracy is not ideal even for skull-stripped T1w scans, possibly due to a noise
or MR-contrast shift relative to the training distribution.

Average single-threaded runtimes for ANTs, NiftyReg, and Robust Registration are approx. 10.9, 3.5, and
18.5 minutes on an AMD EPYC 7452 2.35-GHz CPU, with little difference between cost functions. In contrast,
the DL methods KeyMorph, VTN, and ours require only 21.9, 28.9, and 49.6 seconds on the CPU, respectively.
On an NVIDIA V100 GPU, our method takes less than 4 seconds per image pair for registration, IO, and
resampling combined. One-time model initialization requires an additional 25.3 seconds, after which the user
could register any number of image pairs.

5. CONCLUSIONS

We demonstrate the feasibility of training accurate affine registration networks that generalize to unseen image
types and outperform well-established baselines over a range of image contrasts and resolutions. In an experiment
involving diverse real-world data, we show that our network achieves invariance to acquisition specifics while
training solely with wildly variable images generated from label maps. While tuning DL methods during inference
is challenging, users could always fall back to a classical method in case of a problematic registration pair.
Alternatively, our model could serve as initialization of an iterative follow-up registration step.46 Although the
presented experiment focuses on neuroimaging data, our general strategy is applicable to other anatomy as long as
label maps are available for training—there is no need for these during inference. Crucially, optimizing the spatial
overlap of select anatomical labels enables anatomy-specific registration without the need for segmentation, which
we believe has great potential for applications such as real-time motion correction of MRI.47–49
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Figure 3. Affine 3D registration accuracy (mean Dice scores over white matter, gray matter, and cerebrospinal fluid). Each
bar shows the distribution across 30 separate subject pairs. Subscripts indicate MRI contrast; SS denotes skull-stripping.
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Table 1. Uniform hyperparameter sampling ranges [a, b] for synthesizing wildly variable training images from label maps.
We abbreviate standard deviation (SD), full width at half maximum (FWHM), and field of view (FOV).

Hyperparameter Unit a b

Translation mm −30 30
Rotation ◦ −45 45
Scaling % 90 110
Shear % 90 110

Warp sampling SD mm 0 4
Warp blurring FWHM mm 8 32
Label intensity mean a.u. 0 1
Noise intensity SD % 3 10
Image blurring FWHM mm 0 8
Bias field sampling SD % 0 10
Bias field blurring FWHM mm 48 64
FOV cropping % 0 20
Downsampling factor % 1 8
Gamma exponent – 0.5 1.5
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