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ABSTRACT

We introduce a strategy for learning image registration with-
out acquired imaging data, producing powerful networks ag-
nostic to magnetic resonance imaging (MRI) contrast. While
classical methods accurately estimate the spatial correspon-
dence between images, they solve an optimization problem
for every new image pair. Learning methods are fast at test
time but limited to images with contrasts and geometric con-
tent similar to those seen during training. We propose to re-
move this dependency using a generative strategy that exposes
networks to a wide range of images synthesized from segmen-
tations during training, forcing them to generalize across con-
trasts. We show that networks trained within this framework
generalize to a broad array of unseen MRI contrasts and sur-
pass classical state-of-the-art brain registration accuracy by
up to 12.4 Dice points for a variety of tested contrast com-
binations. Critically, training on arbitrary shapes synthesized
from noise distributions results in competitive performance,
removing the dependency on acquired data of any kind. Ad-
ditionally, since anatomical label maps are often available for
the anatomy of interest, we show that synthesizing images
from these dramatically boosts performance, while still avoid-
ing the need for real intensity images during training.

Index Terms— Deformable registration, MRI-contrast
independence, deep learning without data, image synthesis

1. INTRODUCTION

Image registration estimates spatial correspondences between
images and is a fundamental component of many neuroimag-
ing pipelines [1–3]. This work focuses on networks agnos-
tic to magnetic resonance imaging (MRI) contrast that ex-
cel both at same-contrast registration (e.g. between two T1-
weighted scans, T1w), as well as across contrasts (e.g. T1w
to T2-weighted, T2w). Both are important in neuroimag-
ing, where different contrasts are commonly acquired, such
as T1w for visualizing anatomy or T2w contrast for detect-
ing abnormal fluids [4]. These scans yield images of dif-
ferent appearance for the same anatomy. For morphomet-
ric analyses [1–3], images often need to be registered to an

existing atlas, which is typically of a different contrast [5].
Classical methods estimate a deformation field by optimiz-
ing an objective that balances image similarity with field reg-
ularity [6–10]. While these methods provide strong theory
and good results, the optimization needs to be repeated for
each image pair, and the objective and optimization have to
be adapted to the image type. In contrast, learning methods
learn a function that maps an image pair to a deformation field
from datasets [11–16]. These methods are fast and have the
potential to improve accuracy and robustness to local min-
ima. Unfortunately, learning approaches do not generalize
well to new image types unobserved at training. For example,
a model trained on T1w-T1w pairs will not accurately register
proton-density weighted (PDw) to T1w scans.

Contribution. We propose SynthMorph: a general strat-
egy for learning contrast agnostic registration that can handle
unseen MRI contrasts at test time. SynthMorph enables
registration within and across contrasts, without the need for
real imaging data at training. We first introduce a generative
model for label maps of random geometric shape. Second,
we generate images of arbitrary contrast conditioned on these
maps. Third, the strategy enables us to use a contrast-agnostic
loss that measures label overlap. This leads to two network
variants with unprecedented generalizability, that register any
contrast combination tested without retraining: sm-shapes
trains without acquired data of any kind and matches state-
of-the-art registration of neuroanatomical MRI, sm-brains
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Fig. 1. Strategy for learning contrast-agnostic deformable
registration. At every mini batch, we synthesize a pair of
3D label maps {sm, sf} and then the corresponding 3D im-
ages {m, f} with random contrast. The images are used to
train a U-Net-style network, and the label maps are incorpo-
rated into a loss that is independent of image contrast.
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Fig. 2. Generation of input label maps. A set of smooth 3D
noise images pj (j ∈ {1, 2, ..., J}) is sampled from a standard
distribution, then warped by random deformation fields φj .
The label map s is synthesized from the warped images p̃j =
pj ◦ φj : for each voxel k of s, we determine in which p̃j that
voxel has the highest intensity and assign the corresponding
label j, i.e. sk = argmaxj([p̃j ]k). The example uses J=26.

trains on images synthesized from brain segmentations only
and substantially outperforms all other methods tested. We
emphasize that neither variant requires real intensity images.

2. METHOD

Background. Let m and f be a moving and a fixed 3D
image, respectively. We build on unsupervised learning
frameworks for non-linear registration: a U-Net-style [17]
CNN hθ with parameters θ implementing the VoxelMorph
architecture [11, 18] outputs the deformation φθ = hθ(m, f)
for image pair {m, f}. At each training iteration, hθ is
given images {m, f}, and network parameters are updated
to minimize a loss L(θ;m, f, φθ) that contains a dissimilar-
ity term Ldis(m ◦ φθ, f) and a regularization term Lreg(φ):
L(θ;m, f, φθ) = Ldis(m ◦ φθ, f) + λLreg(φθ), where φθ =
hθ(m, f) is the network output, and λ is a constant.
Proposed method overview. We eliminate the need for ac-
quired training data by synthesizing arbitrary shapes and con-
trasts from scratch (Figure 1). We generate two paired 3D
label maps {sm, sf} using a function gs(z) = {sm, sf} de-
scribed below given random seed z. However, if anatom-
ical labels are available, generating images from these can
further improve accuracy, and we can use these instead of
synthesizing segmentations. We then define another func-
tion gi(sm, sf , z) = {m, f} described below that synthesizes
two intensity volumes {m, f} from {sm, sf} and z. Cru-
cially, synthesizing images from label maps enables us to ob-
viate the dependency of the loss on image contrast and in-
stead use a similarity function that measures label overlap us-
ing (soft) Dice [19]:

L′
dis(φ, sm, sf ) = −

2

J

J∑
j=1

|(sjm ◦ φ)� s
j
f |

|(sjm ◦ φ)⊕ sjf |
, (1)

where sj is the one-hot encoded label j ∈ {1, 2, ..., J} of la-
bel map s, and� and⊕ denote voxel-wise multiplication and
addition, respectively. We parameterize the deformation φ
with a stationary velocity field (SVF) v, which we integrate
within the network to obtain a diffeomorphism [6,18,20]. We
regularize φ using Lreg(φ) = 1

2‖∇u‖
2, where u is the dis-

placement of deformation field φ = Id+ u.

Label maps. To generate random input label maps with
J labels, we first draw J smooth noise images pj (j ∈
{1, 2, ..., J}) by sampling voxels from a normal distribution
at lower resolution rp and upsampling (Figure 2). Second,
we warp each image pj with a random deformation field φj
(see below) to obtain images p̃j = pj ◦ φj . Third, we create
an input label map s by assigning, for each voxel k of s,
the label j with the highest intensity among the images p̃j ,
i.e. sk = arg maxj([p̃j ]k). Given label map s, we generate
two new label maps by deforming s with a random smooth
deformation φm (see below) to produce the moving map
sm = s ◦ φm and similarly the fixed map sf . Alternatively,
if segmentations are available for the anatomy of interest,
such as the brain, we deform two label maps from separate
subjects, selected at random, and only synthesize the images.
We emphasize that no acquired images (e.g. a T1w MRI) are
used during training (Figure 3).

Synthetic images. From the label maps {sm, sf}, we synthe-
size gray-scale images {m, f} [21–23], building on our recent
work on segmentation [24]. Given a label map s, we draw the
intensities of all image voxels for label j from the normal dis-
tributionN (µj , σ

2
j ). We sample the mean µj and standard de-

viation (SD) σj from continuous distributions U(aµ, bµ) and
U(aσ, bσ), respectively, where aµ, bµ, aσ , and bσ are hyper-
parameters. We convolve the image with a Gaussian kernel
K(σi=1,2,3) where σi=1,2,3 ∼ U(0, bK). We further corrupt
the image with an intensity bias field B [25, 26], whose vox-
els we draw from a normal distribution N (0, σ2

B) at lower
resolution rB , with σB ∼ U(0, bB). We upsample B and
take the exponential of each voxel to yield positive values
before applying B via voxel-wise multiplication. We obtain
the images {m,f} after min-max normalization and voxel-
wise contrast exponentiation using parameter γ ∼ N (0, σ2

γ):
m = m̃exp(γ), where m̃ is the normalized moving image
(similarly for the fixed image).

Random transforms. We obtain the transforms φj (j =
1, 2, ..., J) for noise image pj by integrating random SVFs
vj [6,18,20,27]. We draw each voxel of vj as an independent
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Fig. 3. Data synthesis. Top: from random shapes. Bottom:
if available, the synthesis can be initialized with anatomical
labels. We generate a pair of label maps {sm, sf} and from
them images {m, f} with arbitrary contrast. The registration
network then predicts the displacement um→f . If anatomical
labels are used, we generate {sm, sf} from separate subjects.



Table 1. Hyperparameters. Spatial measures are given in voxels. Our data are 160×160×192 volumes. For fields sampled at a
lower resolution r, we obtain the volume size by multiplying each dimension by r and rounding up (e.g. 4×4×5 for r = 1:40).

Hyperparameter λ rp bp aµ bµ aσ bσ rB bB bK σγ rv bv

Value 1 1:32 100 25 225 5 25 1:40 0.3 1 0.25 1:16 3

sample of a normal distribution N (0, σ2
j ) at reduced resolu-

tion rp, where σj ∼ U(0, bp), and each SVF is integrated and
upsampled to full size. We obtain the transforms φm and φf
similarly, based on hyperparameters rv and bv .

3. EXPERIMENTS

We evaluate network variants trained with the proposed
strategy and compare to several baselines. SynthMorph
achieves unprecedented generalizability among neural net-
works, matching or exceeding the accuracy of all classical
and learning baselines tested.

Data. We test cross-subject registration of 3D brain-MRI
scans compiled from the HCP-A [28, 29] and OASIS [30]
datasets, which include T1w and T2w acquisitions at 1.5T
and 3T with ∼(1mm)3 resolution. We also use BIRN [31]
PDw scans from 8 subjects. For training sm-brains, we
obtain 40 distinct-subject segmentations from the Buckner40
dataset [32], a subset of the fMRIDC structural data [33]. We
derive brain and non-brain labels using SAMSEG [3], except
for the PDw data, which include manual brain label maps. As
we focus on deformable registration, we map all images to a
common affine space [1, 34] at 1 mm isotropic resolution.

Setup. For each contrast, we test the networks on 30 im-
age pairs, except for PDw, of which we have only 8. We
test registration within and across datasets, with and without
skull-stripping, using held-out datasets of the same size. To
measure registration accuracy, we propagate the moving la-
bels using the predicted warps and compute the Dice metric
D across the largest J=26 brain labels.

Baselines. We test classical registration with ANTs (SyN) [7]
using recommended parameters [35] since these methods
are already optimized for brain MRI, with the NCC met-
ric within and MI across contrasts. We test NiftyReg [8]
with NMI and diffeomorphic transforms as in our approach.
We also run deedsBCV [10], where we reduce the grid
spacing, search radius and quantization step to improve ac-
curacy in our experiments. As a learning baseline, we train
VoxelMorph (vm), using an NCC-based loss and the same
architecture as SynthMorph, on 100 skull-stripped T1w
images from HCP-A that do not overlap with the validation
set. Similarly, we train a model with an NMI-based loss on
combinations of 100 T1w and 100 T2w images.

SynthMorph variants. For contrast and shape agnostic
training, we generate {sm, sf} from one of 100 random-
shape segmentations s at each iteration (sm-shapes). Each

s contains J=26 labels, all included in the loss Ldis. We
train another network on the Buckner40 anatomical labels
instead of shapes (sm-brains) and optimize the J=26
largest brain labels in Ldis. We emphasize that no acquired
intensity images are used.
Analyses. We conduct extensive hyperparameter analyses
(not shown due to space limitations) using skull-stripped
HCP-A T1w pairs that do not overlap with the test set and
select the values shown in Table 1. Accuracy is mildly sen-
sitive to regularization, and we choose λ=1. Using higher
numbers of convolutional features per layer boosts accuracy;
we choose a network width of n=256.
Results. We show typical examples in Figure 4. Figure 5
compares Dice scores across structures. Exploiting the in-
formation in a set of brain labels, sm-brains achieves the
highest accuracy throughout, even though no real images are
used for training: for T1w-T2w/PDw pairs, sm-brains
leads by at least 3 Dice points. The shape and contrast-
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Fig. 4. Typical results for sm-brains and classical meth-
ods. Each row shows a pair from the datasets indicated on the
left, where the letters b and x mark skull-stripping and reg-
istration across datasets (e.g. OASIS-HCP), respectively. We
show the best-performing classical baseline: NiftyReg on
the 1st, ANTs on the 2nd, and deedsBCV on all other rows.
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Fig. 5. Registration accuracy: overlap of brain structures for
30 subject pairs (8 for PD). The letters b and x indicate skull-
stripping and registration across datasets (e.g. OASIS-HCP).

agnostic network sm-shapes matches the best classical
methods at same-contrast and exceeds all methods except
sm-brains at cross-contrast registration, despite never
having seen real MR images nor brain anatomy. The learning
baselines perform well but break down for unseen contrast
pairs, while SynthMorph remains robust. The learning
methods take less than 1 second per 3D registration on an
Nvidia Tesla V100 GPU, whereas NiftyReg, ANTs and
deedsBCV take ∼0.5 h, ∼1.2 h and ∼3 min on a 3.3-GHz
Intel Xeon CPU, respectively (single-threaded).

4. CONCLUSION

We introduce a general framework for learning registration
that does not require any real imaging data during training.
Instead, we synthesize random label maps and images with
widely varying shape and contrast from noise distributions.
This strategy produces powerful contrast-agnostic networks
that surpass classical accuracy at all contrasts tested, while be-
ing substantially faster. Learning methods like VoxelMorph
yield results similar to SynthMorph for contrasts observed
at training but break down for unseen (new) image types. In
contrast, networks trained in the SynthMorph framework
remain robust, obviating the need for retraining given a new
sequence. In the case where (few) brain segmentations are
available, training on images synthesized from these produces
networks that substantially outperform the state of the art.
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