

Highly Accelerated 3D Imaging with Wave-CAIPI

Berkin Bilgic

Martinos Center for Biomedical Imaging, Charlestown, MA, Harvard Medical School, Boston, MA

Highly Accelerated 3D Imaging

- 3D imaging enjoys high SNR because all spins in the excited volume contribute to noise averaging effect
- But susceptible to motion artifacts during the lengthy acquisition required for high resolution
- We target 3D Gradient Echo (GRE) imaging, and achieve an order of magnitude acceleration with negligible noise amplification

0.5 mm isotropic whole brain @ 7T in 5 minutes

 Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Effect of slice shift in image space

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Bunch Phase: Zigzag G_y

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

Effect of G_v in image space

Bunch Phase: Zigzag G_v

Wave-CAIPI Sampling

Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets

- Wave-CAIPI: 2D CAIPI + BPE in 2 directions
- Spread aliasing in 3D to take full advantage of 3D coil profiles

Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions

Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions

Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions

Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions

Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions

- Wave-CAIPI = $BPE G_v$ + BPE G_z + CAIPI 2D
- View BPE G_v as extra phase modulation rather than modifying k-space traj.

From signal equation:

$$wave(x,y,z) = \sum_{k_x} \mathrm{e}^{i2\pi x k_x/N} \cdot \mathrm{e}^{-i2\pi W_y(k_x)y} \cdot \sum_x \mathrm{e}^{-i2\pi x k_x/N} \cdot img(x,y,z)$$

$$wave(x,y,z) \quad \text{Wave image}$$

$$img(x,y,z) \quad \text{Underlying magnetization}$$

$$W_y(k_x(t)) = \frac{\gamma}{2\pi} \int_0^t G_y(\tau) d\tau \quad \text{k-space trajectory}$$

Image Space

img(x, y, z)

Hybrid Space (iDFT without gridding)

From signal equation:

$$wave(x,y,z) = \sum_{k_x} e^{i2\pi x k_x/N} \cdot e^{-i2\pi W_y(k_x)y} \cdot \sum_x e^{-i2\pi x k_x/N} \cdot img(x,y,z)$$
Inverse Discrete
Fourier Transform

Discrete Fourier

Transform

From signal equation:

$$wave(x, y, z) = F^{-1} \cdot e^{-i2\pi W_y(k_x)y} \cdot F \cdot img(x, y, z)$$
Point Spread Function (PSF)

No need for gridding, simple DFT

- $R_{inplane} = 2$
- => pair-wise aliasing of two rows of voxels
- => <u>small</u> Encoding matrix for each pair
- => separable and easy to solve
- => intuition on why Wave improves reconstruction

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(x, y, z) = F^{-1} \cdot e^{-i2\pi W_y(k_x)y} \cdot F \cdot img(x, y, z)$$

$$Psf(y)$$

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$\begin{bmatrix} F^{-1} \cdot Psf(y_1) \cdot F \\ F^{-1} \cdot Psf(y_2) \cdot F \end{bmatrix} \cdot \begin{bmatrix} row(y_1) \\ row(y_2) \end{bmatrix} = [wave(y_1) + wave(y_2)]$$

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$\begin{bmatrix} F^{-1} \cdot Psf(y_1) \cdot F \cdot C(y_1) \\ F^{-1} \cdot Psf(y_2) \cdot F \cdot C(y_2) \end{bmatrix} \cdot \begin{bmatrix} row(y_1) \\ row(y_2) \end{bmatrix} = [wave(y_1) + wave(y_2)]$$

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$\begin{bmatrix} F^{-1} \cdot Psf(y_1) \cdot F \cdot C_1(y_1) \\ \dots \\ F^{-1} \cdot Psf(y_2) \cdot F \cdot C_{32}(y_2) \end{bmatrix} \cdot \begin{bmatrix} row(y_1) \\ row(y_2) \end{bmatrix} = \begin{bmatrix} coil_1 \\ \dots \\ coil_{32} \end{bmatrix}$$
Encoding matrix

- R_{inplane} = 2 => pair-wise aliasing of two rows of voxels
 - => <u>small</u> Encoding matrix for each pair
 - => separable and easy to solve
 - => intuition on why Wave improves reconstruction

$$wave(y) = F^{-1} \cdot Psf(y) \cdot F \cdot row(y)$$

$$\begin{bmatrix} F^{-1} \cdot Psf(y_1) \cdot F \cdot C_1(y_1) \\ \dots \\ F^{-1} \cdot Psf(y_2) \cdot F \cdot C_{32}(y_2) \end{bmatrix} \cdot \begin{bmatrix} row(y_1) \\ row(y_2) \end{bmatrix} = \begin{bmatrix} coil_1 \\ \dots \\ coil_{32} \end{bmatrix}$$

Similar to SENSE reconstruction, except for PSF formulation

Wave-CAIPI reconstruction

- \Rightarrow Wave gradients G_v and G_z create position dependent PSF
- ⇒ CAIPI 2D shift aliasing pattern
- ⇒ These are accounted for when generating the PSF-based Encoding matrices

$$\Rightarrow$$
 Ex: R = 3x3

- ⇒ each Encoding matrix corresponds to 9 rows of the image
- ⇒ grouping of rows is determined by CAIPI 2D
- \Rightarrow amount of spreading in each row determined by G_y and G_z

Artifact Quantification

Artifact Quantification

In Vivo Acquisition Comparison

- Compare Wave-CAIPI and conventional SENSE
- Acquire fully-sampled data, then accelerate by R = 3x3
- Compute root-mean-square error (RMSE) and 1/g-factor maps (retained SNR)

In Vivo Acquisition Comparison

- Compare Wave-CAIPI and conventional SENSE
- Acquire fully-sampled data, then accelerate by R = 3x3
- Compute root-mean-square error (RMSE) and 1/g-factor maps (retained SNR)
- In vivo acquisitions:
 - At 3T and 7T
 - 1x1x2 mm resolution
 - 224x224x120 FOV

3 Tesla, R=3x3, 1x1x2 mm³, T_{acq}=38s

TR/TE = 26/13.3 ms

7 Tesla, R=3x3, 1x1x2 mm³, T_{acq}=40s

TR/TE = 27/10.9 ms

Accelerated Acquisition Comparison

- Compare Wave-CAIPI, 2D-CAIPI¹ and Bunch Phase²
- Acquire R = 3x3 accelerated data
- Compute 1/g-factor maps (retained SNR)

Accelerated Acquisition Comparison

- Compare Wave-CAIPI, 2D-CAIPI¹ and Bunch Phase²
- Acquire R = 3x3 accelerated data
- Compute 1/g-factor maps (retained SNR)
- In vivo acquisitions:
 - At 3T and 7T
 - 1x1x1 mm isotropic resolution
 - Acquisition time: 2.3 min
 - 240x240x120 FOV

Bunch Encoding

Wave-CAIPI

k-space

Kz Ky Kx/

R=3x3 @ 7 Tesla, 1 mm iso, T_{acq}=2.3min

R=3x3 @ 7 Tesla, 1 mm iso, T_{acq}=2.3min

R=3x3 @ 7 Tesla, 1 mm iso, T_{acq}=2.3min

Bunch Encoding

Wave-CAIPI

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- And finds important applications in
 - Tissue iron quantification¹ (Multiple Sclerosis, Huntington's, Alzheimer's)
 - ❖ Vessel oxygenation estimation²
 - ❖Tissue contrast enhancement (~SWI³)
- Susceptibility mapping relies on phase signal from a 3D Gradient Echo (GRE) acquisition

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem¹,

F: Discrete Fourier Transform

D: susceptibility kernel

 $\delta = \varphi/(\gamma \cdot TE \cdot B_0)$: normalized GRE phase

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = F^{-1}DF\chi$$

 The inversion is made difficult by zeros in susceptibility kernel D

$$D = \frac{1}{3} - \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}$$

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = F^{-1}DF\chi$$

- The inversion is made difficult by zeros in susceptibility kernel D
- Undersampling is due to physics
 Not in our control

Regularized Susceptibility Inversion

 Use prior knowledge to estimate susceptibility map in the presence of undersampling

 Prior: Susceptibility is tied to the magnetic properties of the underlying tissue; hence it should vary smoothly within anatomical boundaries.

 Employ regularization that encourages smoothness within tissues, but avoids smoothing across boundaries.

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \lambda \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

G: Spatial gradient operator in 3D

M: Binary mask derived from magnitude image, prevents smoothing across edges

 λ : Determines the amount of smoothness

L2 Regularized Susceptibility Inversion

We solve for the susceptibility distribution with a convex program,

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \lambda \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

Optimizer given by the solution of:

$$(\mathbf{F}^{-1}\mathbf{D}^{2}\mathbf{F} + \lambda \cdot \mathbf{G}^{T}\mathbf{M}\mathbf{G})\chi = \mathbf{F}^{-1}\mathbf{D}^{T}\mathbf{F}\boldsymbol{\delta}$$

Large linear system, solve rapidly with Preconditioned Conjugate Gradient¹

Wave-CAIPI accelerated QSM

- QSM relies on phase signal from a 3D GRE acquisition
- Long echo times (TE≈30ms) are required for phase evolution to improve SNR
- This constraint on repetition time (TR) further increases QSM data acquisition time:

Whole-brain 3D GRE at 1mm³ resolution:

$$\begin{array}{c} 240x240x120 \; \text{FOV} \\ \text{TR} = 40 \; \text{ms} \end{array} \hspace{0.5cm} \begin{array}{c} \textbf{T}_{\text{acq}} = \textbf{19 min if fully-sampled} \end{array}$$

Wave-CAIPI allows rapid QSM acquisition:

$$T_{acq} = 2.3 \text{ min at R} = 3 \times 3$$

Wave-CAIPI accelerated QSM

- Compare in vivo phase and QSM from Wave-CAIPI, 2D-CAIPI and Bunch Phase Encoding:
 - At 3T and 7T
 - -R = 3x3 acceleration, scan time = 2.3 min
 - 1 mm isotropic resolution
- Phase Processing:
 - Laplacian unwrapping¹ and
 - SHARP filtering for background removal²
- Susceptibility Inversion:
 - Fast L2-regularized inversion³

14 seconds

32 seconds

7 Tesla, R=3x3, 0.5 mm iso, 5.1 min acq

Summary

- Propose Wave-CAIPI acquisition/reconstruction scheme for highly accelerated 3D imaging
- Wave-CAIPI offers 2-fold improvement in g-factor and image artifact penalties compared to 2D-CAIPI and Bunch Phase Encoding

Summary

- Propose Wave-CAIPI acquisition/reconstruction scheme for highly accelerated 3D imaging
- Wave-CAIPI offers 2-fold improvement in g-factor and image artifact penalties compared to 2D-CAIPI and Bunch Phase Encoding
- Deployed in GRE imaging, Wave-CAIPI allows 9-fold acceleration with ~perfect SNR retention at 3T and 7T
- Combined with fast phase and susceptibility processing methods, it enables QSM at 1 mm resolution in 2.3 min

Thank you for your attention