

Joint Reconstruction of Phase-Cycled Balanced SSFP with Constrained Parallel Imaging

B Bilgic^{1,2}, T Witzel^{1,2}, H Bhat³, LL Wald^{1,2}, K Setsompop^{1,2}

1 Martinos Center, Charlestown, MA, USA 2 Harvard Medical School, Boston, MA, USA 3 Siemens Medical Solutions, Charlestown, MA, United States

Declaration of Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have the following financial interest or relationship(s) to disclose with regard to the subject matter of this presentation:

- Research support: Siemens
- Licensing agreement: Samsung

Balanced SSFP

bSSFP has unique T2 / T1 contrast inherent high SNR efficiency

Provides strong contrast between tissues with different T2 / T1 ratios

Cardiac [1] (blood – myocardium contrast)

Angio [2] (blood – surrounding tissue)

MSK [3] (fat – muscle)

fast imaging time: short TE & TR

Neuro [4] nerves at skull base (CSF – cranial nerve)

- [1] DC Peters et al MRM 2002
- [2] NK Bangerter et al MRM 2011
- [3] GE Gold et al JMRI 2007
- [4] JW Casselman et al Am Soc Neuroradiology 1993

Phase-cycled bSSFP

- But suffers from banding artifacts due to sensitivity to B0 inhomogeneity
- Can be mitigated by phase-cycling:
 - multiple acquisitions with different phase increment btw successive RFs
 - this shifts location of banding artifacts

- But suffers from banding artifacts due to sensitivity to B0 inhomogeneity
- Can be mitigated by phase-cycling:
 - multiple acquisitions with different phase increment btw successive RFs
 - this shifts location of banding artifacts
 - combine cycles with Max Intensity Projection (MIP)

Phase-cycled bSSFP

- Phase-cycling mitigates banding artifacts
- But increases scan time, counteracting inherent efficiency of bSSFP

- Parallel Imaging [1,2] and Simultaneous MultiSlice (SMS) [3,4] employ receiver sensitivity encoding to reduce scan time
- And have been deployed in phase-cycled bSSFP for up to 4-fold acceleration [5,6]

- [1] KP Pruessmann et al MRM 1999
- [2] MA Griswold et al MRM 2002
- [3] DJ Larkman et al JMRI 2001
- [4] FA Breuer et al MRM 2005
- [5] D Stab et al MRM 2011
- [6] Y Wang et al MRM 2015

Joint Recon for Phase-cycled bSSFP

We propose to jointly recon phase-cycled images

- We introduce Joint L1-SPIRIT:
 - recons all phase-cycles simultaneously to exploit their mutual info
 - fit SPIRiT kernels [1] jointly across coils and phase-cycles
 - analogous to k-t in dynamic imaging [2], virtual coil in diffusion imaging [3] and joint recon in TIAMO [4]

^[2] F Huang et al MRM 2005

^[3] E Dai et al MRM 2016

^[4] S Orzada et al MRM 2010

Joint Recon for Phase-cycled bSSFP

We propose to jointly recon phase-cycled images

- We introduce Joint L1-SPIRIT:
 - by creating virtual coils out of the phase-cycles,
 converts banding artifacts into useful, additional spatial encoding
 - reduction in g-factor noise amplification is > 1.8-fold relative to GRAPPA
 SNR improvement is similar to 3 averages of GRAPPA recon

GRAPPA Recon

R=2 acceleration, ignoring coil and readout axes

Joint GRAPPA

Extend GRAPPA to jointly recon all phase-cycles [1]

Joint GRAPPA

Staggered sampling for complementary k-space info:

Proposed: Joint L1-SPIRiT

- Staggered sampling for complementary k-space info:
- SPIRiT uses compact kernels and permits L1 regularization

+ Total Variation regularization

Data Reconstruction

GCC coil compression to 12 channels [1]

Kernels estimated with Tikhonov regularization from 32 ACS lines

Regularization, kernel sizes and staggering amount optimized for best RMSE

G-factor from 300 Monte-Carlo iterations [2]

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- ightharpoonup FOV = 380×380 mm²,
- 5 mm thick slice
- $mtx = 160 \times 160$
- \star TR/TE = 3.3/1.54 ms
- ❖ 34-chan

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- ightharpoonup FOV = 380×380 mm²,
- 5 mm thick slice
- $mtx = 160 \times 160$
- TR/TE = 3.3/1.54 ms
- 34-chan

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- FOV = $380 \times 380 \text{ mm}^2$,
- 5 mm thick slice
- $mtx = 160 \times 160$
- Rrightarrow TR/TE = 3.3/1.54 ms
- ❖ 34-chan

RMSE reduced 70%

G_{max} reduced 1.9-fold

G_{avg} reduced 1.7-fold

SNR improvement is ~3 averages of GRAPPA

0%

100% 125%

four phase-cycles, acceleration R=6

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- FOV = $240 \times 240 \text{ mm}^2$,
- 4.5 mm thick slice
- $mtx = 160 \times 160$
- RRT = 3.4/1.6 ms
- ❖ 32-chan

four phase-cycles, acceleration R=6

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- FOV = $240 \times 240 \text{ mm}^2$,
- 4.5 mm thick slice
- $mtx = 160 \times 160$
- RRT = 3.4/1.6 ms
- ❖ 32-chan

four phase-cycles, acceleration R=6

Proposed: Joint L1-SPIRiT

- four cycles $\{0, \pi/2, \pi, 3\pi/2\}$
- FOV = $240 \times 240 \text{ mm}^2$,
- 4.5 mm thick slice
- $mtx = 160 \times 160$
- \star TR/TE = 3.4/1.6 ms
- ❖ 32-chan

four phase-cycles, acceleration R=6

Proposed: Joint L1-SPIRiT

RMSE reduced 90%

G_{max} reduced 2.5-fold

G_{avg} reduced 2.2-fold

SNR improvement is >4 averages of GRAPPA

four phase-cycles, acceleration R=6 Joint GRAPPA

Proposed: Joint L1-SPIRiT

GRAPPA

Simultaneous MultiSlice bSSFP

SMS: simultaneously excite and encode multiple slices

Simultaneous MultiSlice bSSFP

- SMS: simultaneously excite and encode multiple slices
- Incur FOV shift across slices to improve parallel imaging

Simultaneous MultiSlice bSSFP

- SMS: simultaneously excite and encode multiple slices
- Incur FOV shift across slices to improve parallel imaging

FOV/2 slice shift also causes off-resonance shift by π

Simultaneous MultiSlice bSSFP @ MultiBand=8

At MultiBand=8, each collapsed slice has contribution from four phase-cycles:

Simultaneous MultiSlice bSSFP @ MultiBand=8

At MultiBand=8, each collapsed slice has contribution from four phase-cycles:

Simultaneous MultiSlice bSSFP @ MultiBand=8

- At MultiBand=8, each collapsed slice has contribution from four phase-cycles
- After unaliasing collapsed slices and shifting slices back, apply MIP combination:

MIP combination

Neuro SMS acquisition

four cycles, MultiBand = 8

Split Slice GRAPPA

- 8 slices acquired separately
- Collapsed retrospectively
- FOV/4 slice shift

Neuro SMS acquisition

four cycles, MultiBand = 8

Joint Slice GRAPPA

RMSE reduced 30%

G_{max} reduced 2.2-fold

G_{avg} reduced 1.5-fold

SNR improvement is
>2 averages of GRAPPA

Conclusion

- Joint L1-SPIRiT improves parallel imaging for phase-cycled bSSFP, with substantial reduction in noise amplification and recon error
- This allows high acceleration to mitigate scan time burden of phase-cycling

Limitations include:

- Cycles need to be registered for joint recon gating, breath-hold
- No of kernels scale with (no of cycles)²
 → smaller no of GCC channels

Thanks!

Questions / Comments:

berkin@nmr.mgh.harvard.edu

martinos.org/~berkin

Support: NIH R24 MH106096

R01 EB020613

R01 EB017337

U01 HD087211