Rapid QSM Acquisition with Wave-CAIPI B. Bilgic^{1,2}, B. A. Gagoski^{2,3}, S.F. Cauley^{1,2}, A.P. Fan^{1,4}, J.R. Polimeni^{1,2}, P.E. Grant^{2,3}, L.L.Wald^{1,2,5}, K. Setsompop^{1,2} - 1 Martinos Center for Biomedical Imaging, Charlestown, MA, - 2 Harvard Medical School, Boston, MA - 3 Boston Children's Hospital, Boston, MA - 4 Massachusetts Institute of Technology, Cambridge, MA - 5 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets Effect of slice shift in image space Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets Bunch Phase: Zigzag G_y Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets Bunch Phase: Zigzag G_y ### Wave-CAIPI Sampling Recent modifications to rectilinear k-space sampling provided more robust reconstructions of highly under-sampled datasets - Wave-CAIPI: 2D CAIPI + BPE in 2 directions - Spread aliasing in 3D to take full advantage of 3D coil profiles Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions Combination of G_y and G_z gradients with inter-slice shifts yields voxel spreading across three dimensions #### Wave-CAIPI improves parallel imaging - Voxel spreading increases the distance across aliasing locations - This increases the variation in coil sensitivity profiles and improves parallel imaging capability