

Fast Reconstruction for Regularized Quantitative Susceptibility Mapping

- B. Bilgic^{1,2}, A.P. Fan^{1,3}, C. Eichner^{1,2}, S.F. Cauley^{1,2}, J.R. Polimeni^{1,2}, M. Bianciardi^{1,2}, E. Adalsteinsson^{1,3,4}, L.L.Wald^{1,2,4}, K. Setsompop^{1,2}
- 1 Martinos Center for Biomedical Imaging, Charlestown, MA,
- 2 Harvard Medical School, Boston, MA
- 3 Massachusetts Institute of Technology, Cambridge, MA
- 4 Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA

Declaration of Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have no financial interests or relationships to disclose with regard to the subject matter of this presentation.

Quantitative Susceptibility Mapping (QSM)

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem¹,

$$\delta = F^{-1} D F \chi$$
where the stimate estimate

F: Discrete Fourier Transform

D: susceptibility kernel

 $\delta = \varphi/(\gamma \cdot TE \cdot B_0)$: normalized field map

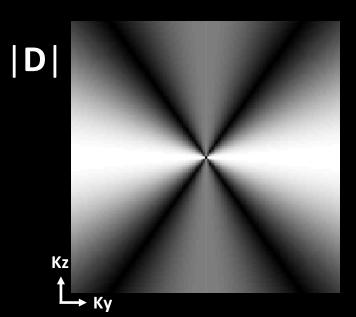
Quantitative Susceptibility Mapping (QSM)

- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = F^{-1}DF\chi$$

 The inversion is made difficult by zeros in susceptibility kernel D

$$D = \frac{1}{3} - \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}$$

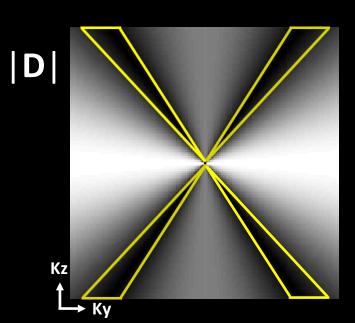


Quantitative Susceptibility Mapping (QSM)

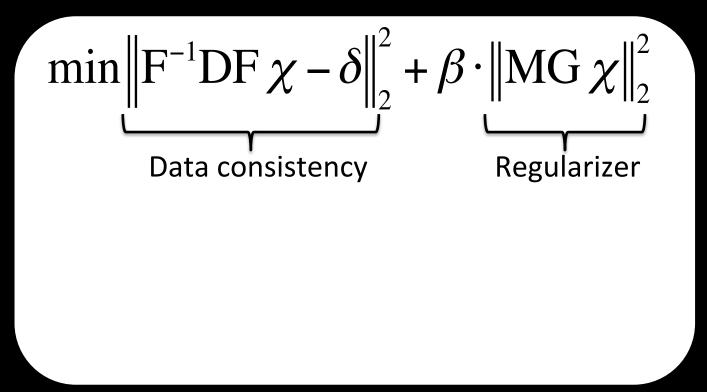
- QSM estimates the underlying magnetic susceptibility that gives rise to subtle changes in the magnetic field
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = F^{-1}DF\chi$$

- The inversion is made difficult by zeros in susceptibility kernel D
- Undersampling is due to physics
 Not in our control



- Regularized QSM imposes smoothness or sparsity constraints on the gradient of the susceptibility map
- L2-regularization^{1,2} (smoothness prior):



- Regularized QSM imposes smoothness or sparsity constraints on the gradient of the susceptibility map
- L2-regularization^{1,2} (smoothness prior):

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \boldsymbol{\beta} \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

G: Spatial gradient operator in 3D

M: Binary mask derived from magnitude image, prevents smoothing across edges

eta : Determines the amount of smoothness

- Regularized QSM imposes smoothness or sparsity constraints on the gradient of the susceptibility map
- L2-regularization^{1,2} (smoothness prior):

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

L1-regularization^{3,4} (sparsity prior):

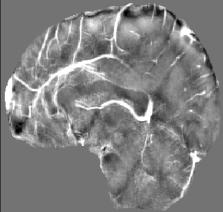
$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{1}$$

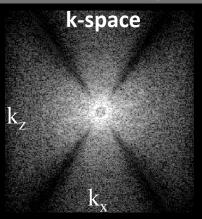
- Regularized QSM imposes smoothness or sparsity constraints on the gradient of the susceptibility map
- L2-regularization^{1,2} (smoothness prior)
- L1-regularization^{3,4} (sparsity prior)
- Reported reconstruction times are in the range between
 20 minutes^{2,3} to 2-3 hours⁴
- We propose efficient solvers that are up to 20× faster
- Facilitate online recon and clinical application of QSM

Matlab Software: martinos.org/~berkin

3D GRE 0.6 mm iso

L2 Regularized





Closed-form L2¹ Recon time: 0.9 sec

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \boldsymbol{\beta} \cdot \left\| \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

- Without magnitude weighting (M=Identity), we proposed a closed-form solution¹
- This relies on computing gradients in k-space rather than image-space:

$$G = F^{-1}EF$$
 E: Diagonal

With this trick, solution requires only two FFTs:

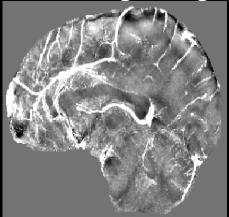
$$\chi = F^{-1} (D^2 + \beta \cdot E^2)^{-1} \cdot DF \delta$$
diagonal matrix

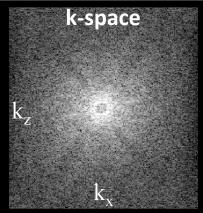
$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \boldsymbol{\beta} \cdot \left\| \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

- Without magnitude weighting (M=Identity), we proposed a closed-form solution¹
- This relies on computing gradients in k-space rather than image-space
- With this trick, solution requires only two FFTs
- Elegant improvements to closed-form L2:
 Khabipova et al #602 and Schweser et al #605

3D GRE 0.6 mm iso

L2 with Magn Weight





ProposedRecon time: 88 sec

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \boldsymbol{\beta} \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

• When magnitude weighting is included, optimizer is given by the solution of:

$$(D^{2} + \beta \cdot E^{H} F M F^{-1} E)F \chi = DF \delta$$
This term cancels
if M = I

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

When magnitude weighting is included, optimizer is given by the solution of:

$$(D^2 + \beta \cdot E^H FMF^{-1} E)F \chi = DF \delta$$

- Large linear system, solve iteratively with Conjugate Gradient (CG)
- Proposal: Use closed-form solution to speed-up convergence of Conjugate Gradient

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

When magnitude weighting is included, optimizer is given by the solution of:

$$(D^{2} + \beta \cdot E^{H} F M F^{-1} E) F \chi = DF \delta$$
call A

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

When magnitude weighting is included, optimizer is given by the solution of:

$$AF\chi = DF\delta$$

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

• When magnitude weighting is included, optimizer is given by the solution of:

$$AF \chi - DF \delta = 0$$

- ullet The convergence speed of CG depends on the condition number of A
- ullet Bring A closer to being identity using a preconditioner

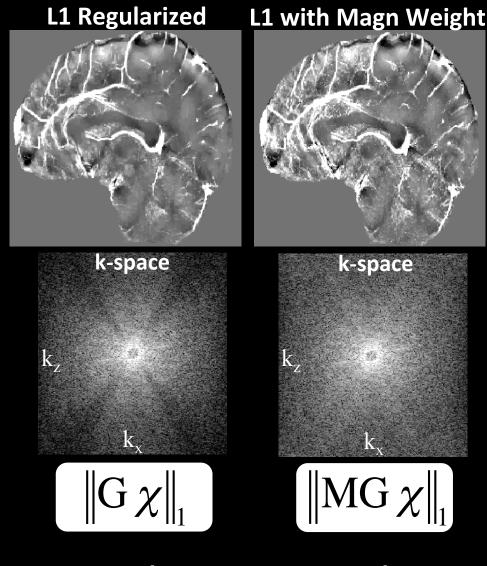
$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

 When magnitude weighting is included, optimizer is given by the solution of:

$$(D^{2} + \beta \cdot E^{2})^{-1} \cdot (AF \chi - DF \delta) = 0$$
closed-form

- Approximation: $(D^2 + \beta \cdot E^2)^{-1} \approx A^{-1}$
- Preconditioned CG allows fast L2-regularization
 with Magnitude Weighting

3D GRE 0.6 mm iso



Proposed
Recon time: 60 sec

ProposedRecon time: 275 sec

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{1}$$

- L1-regularization has no closed-form solution, need to use expensive iterative methods
- Proposal: separate L1-regularization into simpler L2-regularization and soft thresholding problems
- Employ closed-form solution to solve L2-problem

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{1}$$

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{y} \right\|_{1}$$
auxiliary variable

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \chi - \delta \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{y} \right\|_{1}$$

$$\text{st } \mathbf{y} = \mathbf{M} \mathbf{G} \, \chi$$

Variable-splitting^{1,2} separates into simpler problems

1) L2-regularized:

$$\chi_{t+1} = \underset{\chi}{\operatorname{argmin}} \| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \chi - \delta \|_{2}^{2} + \mu \| \mathbf{y}_{t} - \mathbf{M} \mathbf{G} \chi \|_{2}^{2}$$

2) Soft thresholding:

$$y_{t+1} = \underset{y}{\operatorname{argmin}} \alpha \cdot ||y||_{1} + \mu ||y - MG \chi_{t+1}||_{2}^{2}$$

$$\min \|\mathbf{F}^{-1}\mathbf{D}\mathbf{F} \chi - \delta\|_{2}^{2} + \alpha \cdot \|\mathbf{y}\|_{1}$$

$$\text{st } \mathbf{y} = \mathbf{M}\mathbf{G} \chi$$

Variable-splitting^{1,2} separates into simpler problems
 1) L2-regularized:

$$\chi_{t+1} = \underset{\chi}{\operatorname{argmin}} \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \chi - \delta \right\|_{2}^{2} + \mu \left\| y_{t} - \mathbf{M} \mathbf{G} \chi \right\|_{2}^{2}$$
enforces $y = \mathbf{M} \mathbf{G} \chi$

 μ affects convergence, not final solution¹

$$\min \|\mathbf{F}^{-1}\mathbf{D}\mathbf{F} \chi - \delta\|_{2}^{2} + \alpha \cdot \|\mathbf{y}\|_{1}$$

$$\text{st } \mathbf{y} = \mathbf{M}\mathbf{G} \chi$$

Variable-splitting^{1,2} separates into simpler problems

1) L2-regularized:

$$\chi_{t+1} = \underset{\chi}{\operatorname{argmin}} \| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \chi - \delta \|_{2}^{2} + \mu \| \mathbf{y}_{t} - \mathbf{M} \mathbf{G} \chi \|_{2}^{2}$$

Very similar to L2-regularized QSM:

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \boldsymbol{\chi} - \boldsymbol{\delta} \right\|_{2}^{2} + \beta \left\| \mathbf{M} \mathbf{G} \, \boldsymbol{\chi} \right\|_{2}^{2}$$

Use Preconditioned Conjugate Gradient

$$\min \left\| \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \, \chi - \delta \right\|_{2}^{2} + \alpha \cdot \left\| \mathbf{y} \right\|_{1}$$

$$\text{st } \mathbf{y} = \mathbf{M} \mathbf{G} \, \chi$$

Variable-splitting^{1,2} separates into simpler problems
 2) Soft thresholding:

$$y_{t+1} = \underset{y}{\operatorname{argmin}} \alpha \cdot ||y||_{1} + \mu ||y - MG \chi_{t+1}||_{2}^{2}$$

Closed-form solution with point-wise operations:

$$y_{t+1} = \max\left(\left|\text{MG }\chi_{t+1}\right| - \frac{\alpha}{2\mu}, 0\right) \cdot \text{sign}(\text{MG }\chi_{t+1})$$

$$\min \|\mathbf{F}^{-1}\mathbf{D}\mathbf{F} \chi - \delta\|_{2}^{2} + \alpha \cdot \|\mathbf{y}\|_{1}$$

$$\text{st } \mathbf{y} = \mathbf{M}\mathbf{G} \chi$$

Variable-splitting^{1,2} separates into simpler problems

1) L2-regularized:

Use Preconditioned CG

Iterate until converged

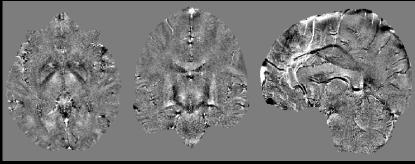
2) Soft thresholding:

$$y_{t+1} = \max\left(\left|\text{MG }\chi_{t+1}\right| - \frac{\alpha}{2\mu}, 0\right) \cdot \text{sign}(\text{MG }\chi_{t+1})$$

Data Acquisition

High-resolution 3D GRE

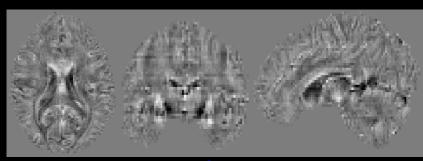
- 0.6 mm isotropic at 3T
- TR / TE = $\frac{26}{8.1}$ ms
- R_{inplane} = 2, Partial Fourier = 3/4
- \bullet $T_{acq} = 16$ min



3D GRE Phase @ 3T

❖ Simultaneous Multi-Slice EPI

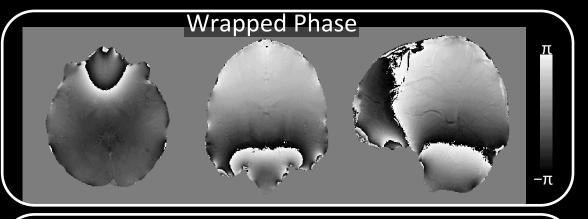
- 2 mm isotropic at 7T
- $TR/TE_1/.../TE_4 = 2040/15/74 \text{ ms}$
- R_{inplane} = 3, Multi-Band = 3
- $T_{acq} = 2 sec$

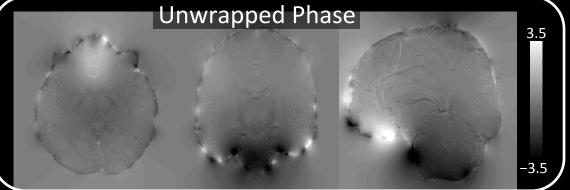


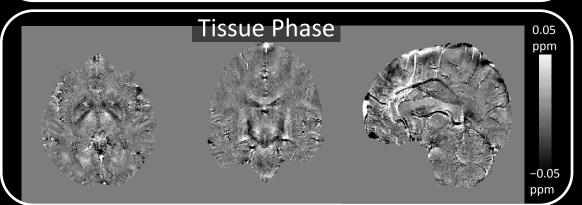
SMS EPI Phase @ 7T

Phase Processing

3D GRE 0.6 mm iso





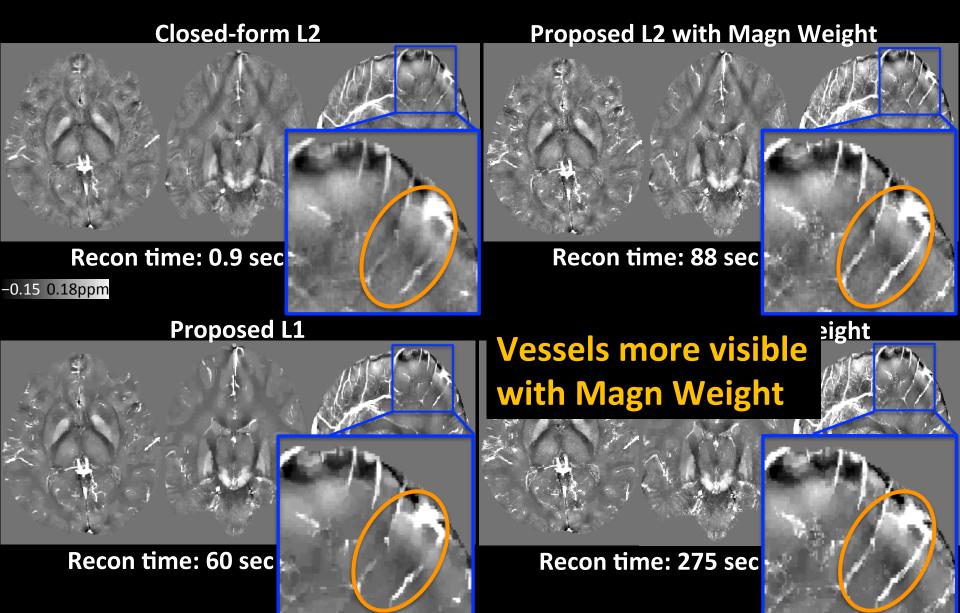


Laplacian unwrapping¹: 6 seconds

SHARP filtering²:
7 seconds

Matlab Software: martinos.org/~berkii

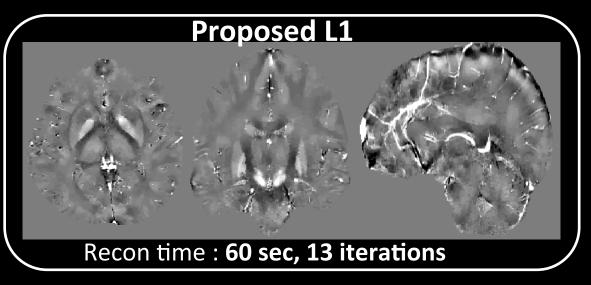
3D GRE 0.6 mm iso



Max Intensity Projections over 3mm Slab

martinos.org/~berkii

Comparing L1-Regularized 3D GRE 0.6 mm iso QSM Methods



Nonlinear Conjugate Gradient L1 1,2

Recon time: 1350 sec, 50 iterations

20× speed-up

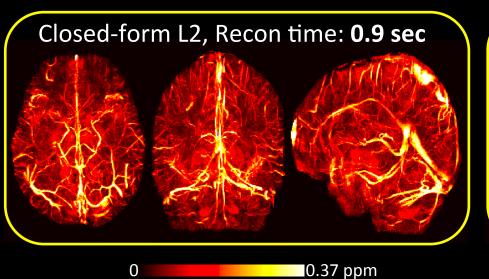
Matlab Software: martinos.org/~berkir

0.15 ppm

−0.15 ppm

Maximum Intensity Projections

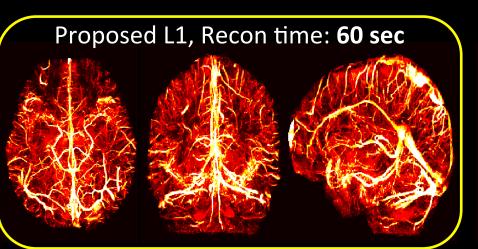
3D GRE 0.6 mm iso

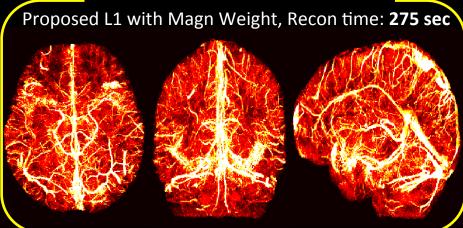


Proposed L2 with Magn Weight, Recon time: 88 sec

Vessels brighter

with Magn Weight

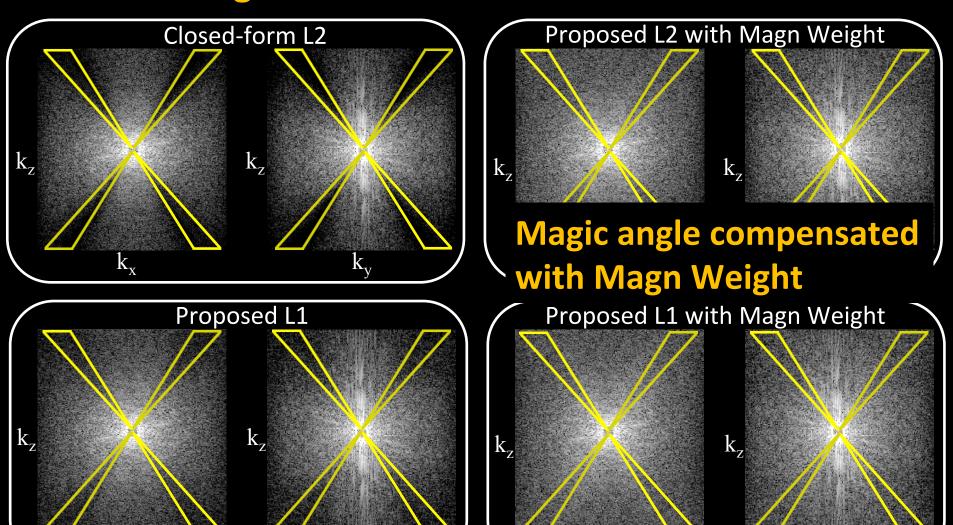




Matlab Software: martinos.org/~berkir

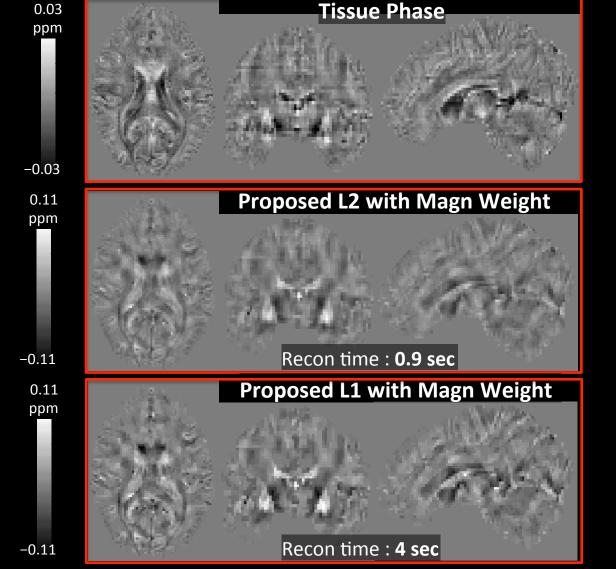
K-Space View in log scale

3D GRE 0.6 mm iso



7.5 Matlab Software:

SMS EPI, 2 mm iso @ 7T R_{inplane} = 3, Multi-Band = 3 2 second acquisition



Fast recon may facilitate functional QSM^{1,2}

¹ Balla D et al, ISMRM 2012

² Bianciardi M et al, HBM 2013

Fast Regularized QSM: Conclusion

 Proposed rapid L1- and L2-regularized QSM algorithms that yield up to 20× speed-up

Extended these to admit magnitude weighted regularization for improved reconstruction

 When combined with fast phase processing methods, these may facilitate online recon and clinical QSM

<u>Acknowledgement</u>

NIH R00EB012107, P41RR14075
NIH Blueprint for Neuroscience 1U01MH093765
(Human Connectome Project)