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Quantitative Susceptibility Mapping (QSM)

* QSM estimates the underlying magnetic susceptibility
that gives rise to subtle changes in the magnetic field

e Estimation of the susceptibility map y from the
unwrapped phase ¢ involves solving an inverse problem?,

§=F!DFy

measured estimate

F: Discrete Fourier Transform
D: susceptibility kernel
6 = ¢/(y*TE*B,) : normalized field map

' Marques JP et al., Concepts in Magn Res 2005



Quantitative Susceptibility Mapping (QSM)

* QSM estimates the underlying magnetic susceptibility
that gives rise to subtle changes in the magnetic field

e Estimation of the susceptibility map y from the
unwrapped phase ¢ involves solving an inverse problem,

§=F!DFy

 The inversion is made difficult by
zeros in susceptibility kernel D
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Quantitative Susceptibility Mapping (QSM)

* QSM estimates the underlying magnetic susceptibility
that gives rise to subtle changes in the magnetic field

e Estimation of the susceptibility map y from the
unwrapped phase ¢ involves solving an inverse problem,

§=F!DFy

* The inversion is made difficultby  |D|
zeros in susceptibility kernel D

* Undersampling is due to physics
Not in our control




Regularized Susceptibility Inversion

* Regularized QSM imposes smoothness or sparsity
constraints on the gradient of the susceptibility map

e L2-regularization'? (smoothness prior):

min|[F'DF - (SHz +B-[MG x|
\—Y—’ \_Y_I

Data consistency Regularizer

" De Rochefort L et al., MRM 2010 2 Liu T et al., MRM 2011



Regularized Susceptibility Inversion

* Regularized QSM imposes smoothness or sparsity
constraints on the gradient of the susceptibility map

e L2-regularization'? (smoothness prior):

min|[F'DF - (SHz +B-[MG x|

G: Spatial gradient operator in 3D

M Binary mask derived from magnitude
*image, prevents smoothing across edges

ﬁ . Determines the amount of smoothness

" De Rochefort L et al., MRM 2010 2 Liu T et al., MRM 2011



Regularized Susceptibility Inversion

* Regularized QSM imposes smoothness or sparsity
constraints on the gradient of the susceptibility map

e L2-regularization'? (smoothness prior):

min|[F'DF - (SHz +B-[MG x|

* L1-regularization®* (sparsity prior):

2
minHF‘lDFX — 5”2 +a-|MG XHI

' De Rochefort L et al., MRM 2010 2 Liu T etal, MRM 2011 3 Liu J etal., NIMG 2012 4 Wu B et al., MRM 2012



Regularized Susceptibility Inversion

Regularized QSM imposes smoothness or sparsity
constraints on the gradient of the susceptibility map

L2-regularization? (smoothness prior)
L1-regularization3* (sparsity prior)

Reported reconstruction times are in the range between
20 minutes?3 to 2-3 hours*

We propose efficient solvers that are up to 20x faster

Facilitate online recon and clinical application of QSM

' De Rochefort L et al., MRM 2010 2 Liu T etal, MRM 2011 3 Liu J etal., NIMG 2012 4 Wu B et al., MRM 2012



L2 Regularized

G x|

Closed-form L21
Recon time: 0.9 sec

! Bilgic B et al., JMRI 2013

3D GRE 0.6 mm iso



L2 Regularized QSM

min|[F'DF - 5”2 +B| Gyl

* Without magnitude weighting (M=Identity), we
proposed a closed-form solution?

* This relies on computing gradients in k-space rather
than image-space:

G=F'EF E : Diagonal
e With this trick, solution requires only two FFTs:
y=F'(D°+B-E°)"-DF{
| )

|
diagonal matrix

1 Bilgic B et al., JMRI 2013



L2 Regularized QSM

min[[F'DF - 5”2 +B| Gyl

Without magnitude weighting (M=Identity), we
proposed a closed-form solution?

This relies on computing gradients in k-space rather
than image-space

With this trick, solution requires only two FFTs

Elegant improvements to closed-form L2:
Khabipova et al #602 and Schweser et al #605

1 Bilgic B et al., JMRI 2013



3D GRE 0.6 mm iso
L2 with Magn Weight

Proposed
Recon time: 88 sec



L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

* When magnitude weighting is included, optimizer
is given by the solution of:

(D*+ B-E”|IFMF'[E)F y = DF §
X
This term cancels
ifM=1




L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

When magnitude weighting is included, optimizer
is given by the solution of:

(D’+B-E"FMF'E)F y =DF§

Large linear system, solve iteratively with
Conjugate Gradient (CG)

Proposal: Use closed-form solution to speed-up
convergence of Conjugate Gradient




L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

* When magnitude weighting is included, optimizer
is given by the solution of:

(D’+B-E"FMF'E)F y =DF§
call A




L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

* When magnitude weighting is included, optimizer
is given by the solution of:

AF y=DFo




L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

* When magnitude weighting is included, optimizer
is given by the solution of:

AF 5 -DF§ =0

The convergence speed of CG depends on the
condition number of A

Bring A closer to being identity using a
preconditioner




L2 Regularization with Magnitude Weighting

min|[F'DF - 5”2 +B-[MG ]

* When magnitude weighting is included, optimizer
is given by the solution of:

(D’+B-E*)" - (AF ¥ -DF§)=0

|
closed-form
, , 2 2\-1 -1
* Approximation: (D +/J"E ) ~ A

 Preconditioned CG allows fast L2-regularization
with Magnitude Weighting




3D GRE 0.6 mm iso
L1 Regularized

Proposed Proposed
Recon time: 60 sec Recon time: 275 sec



L1 Regularized QSM

2
minHF‘lDF)( -0 ‘2 +o HMG XH1

L1-regularization has no closed-form solution,
need to use expensive iterative methods

Proposal: separate L1-regularization into simpler
L2-regularization and soft thresholding problems

Employ closed-form solution to solve L2-problem




L1 Regularized QSM

2
minHF‘lDF)( — (5H2 +0- HMG XH1




L1 Regularized QSM

2
min|[F"'DF x - 8| +a- |y,

auxiliary variable




L1 Regularized QSM

min|[F'DF -] +a- |
st y=MG y

» Variable-splitting!? separates into simpler problems
1) L2-regularized:

2 2
XYoot = argminHF‘lDFX — (5”2 +ul|y, - MG ||
X

2) Soft thresholding:
v =argmina- ||| +uy-MG x,..|;
Y

' Goldstein T et al, SIAM 2009 2 Chen Z et al, J Comp Assist Tomogr 2012



L1 Regularized QSM

min|[F'DF -] +a- |
st y=MG y

» Variable-splitting!? separates into simpler problems
1) L2-regularized:

2 2
XYoot = argminHF‘lDFX — (5”2 +ul|y, - MG ||
X

\ J

Y
enforces y=MG y

u affects convergence,
not final solution?

' Goldstein T et al, SIAM 2009 2 Chen Z et al, J Comp Assist Tomogr 2012



L1 Regularized QSM

min|[F'DF  ~ 0| +a-[y),
st y=MG y

» Variable-splitting!? separates into simpler problems
1) L2-regularized:

2 2
Xt = argminHF‘lDFX - 5”2 +uly, -MG )(Hz
X

* Very similar to L2-regularized QSM:
2
min|[F~'DF x - 8| +B|MG ],

Use Preconditioned Conjugate Gradient

' Goldstein T et al, SIAM 2009 2 Chen Z et al, J Comp Assist Tomogr 2012



L1 Regularized QSM

min|[F'DF -] +a- |
st y=MG y

» Variable-splitting!? separates into simpler problems
2) Soft thresholding:

2
2

Viel = argmina . HyH1 + MHy -MG X
Y

* Closed-form solution with point-wise operations:

yt+l - maX(‘MG Xt+1 - 2£’O) . Slgn(MG Xt+1)
U

' Goldstein T et al, SIAM 2009 2 Chen Z et al, J Comp Assist Tomogr 2012



L1 Regularized QSM

min|[F'DF  ~ 0| +a-[y),
st y=MG ¥

» Variable-splitting!? separates into simpler problems

1) L2-regularized: h

Use Preconditioned CG . ~+e until converged

2) Soft thresholding: v

Yin = max(‘MG K|~ gao) -s1gn(MG yx,,,)
U

' Goldstein T et al, SIAM 2009 2 Chen Z et al, J Comp Assist Tomogr 2012



Data Acquisition

*** High-resolution 3D GRE

* 0.6 mm isotropic at 3T

e TR/TE=26/8.1ms

* Rinpiane = 2, Partial Fourier = 3/4
e T..=16min

acq

*¢* Simultaneous Multi-Slice EPI

* 2 mm isotropicat /7T 5
* TR/TE,/.../TE, =2040/15/74 ms %
I = 3, Multi-Band =3

* T,q=25ec

inplane



Phase Processing 3D GRE 0.6 mm iso

Wrapped Phase

Laplacian
unwrapping?:
6 seconds

SHARP
filtering?:
7 seconds

' Li W et al, Neuroimage 2012 2 Schweser F et al, Neuroimage 2011
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Comparing L1-Regularized 3D GRE 0.6 mm iso
QSM Methods

e

Pro oed L1

0.15
ppm u ,
K Recon time : 60 sec, 13 iterations | /
20x speed-up
/ Nonlinear Conj ugate Gradient L1 12 \
-0.15 ,
ppm

k Recon time : 1350 sec, 50 iterations /

! Lustig M et al, MRM 2007 2 Bilgic B et al, Neuroimage 2012



Maximum Intensity 3D GRE 0.6 mm iso
Projections

ﬁroposed L2 with Magn Weight, Recon time: 88 sea
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_ Vessels brighter
with Magn Weight

/ Proposed L1 with Magn Weight, Recon time: 275 sec\




K-Space View
in log scale

CIosed form L2

3D GRE 0.6 mm iso

Magic angle compensated

with Magn Weight /




SMSEPI, 2mmiso@ 7T
R =3, Multi-Band =3

inplane

2 second acquisition

0.03
ppm

-0.03

0.11
ppm

Fast recon may
facilitate
functional QSM*2

-0.11

0.11
ppm

' Balla D et al, ISMRM 2012

0.1 ' Recon time : 4 sec 2 Bianciardi M et al, HBM 2013




Fast Regularized QSM: Conclusion

* Proposed rapid L1- and L2-regularized QSM algorithms
that yield up to 20x speed-up

 Extended these to admit magnitude weighted
regularization for improved reconstruction

* When combined with fast phase processing methods,
these may facilitate online recon and clinical QSM
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