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Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility y

Susceptibility correlates well with tissue iron concentration,
especially in iron rich deep gray matter structures [1,2]
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Quantitative Susceptibility Mapping (QSM) aims to quantify
tissue magnetic susceptibility y

Susceptibility correlates well with tissue iron concentration,
especially in iron rich deep gray matter structures

Susceptibility mapping requires the solution of an inverse
problem,

FIDF y = ¢

D=—— Undersamples k-space
on a conical surface




Solution of inverse problem is facilitated by regularization that
Imposes prior knowledge [1]
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Solution of inverse problem is facilitated by regularization that
Imposes prior knowledge [1]

; 2
x = argmin, |l — F'DFx|l," + 1~ [|Gxll,”

\ J \ J
| |

data consistency £, over gradients

Prior: underlying susceptibility map is smooth

[1] de Rochefort et al., Magn Reson Med 2010



Solution of inverse problem is facilitated by regularization that
Imposes prior knowledge [1]

; 2
x = argmin, |l — F'DFx|l," + 1~ [|Gxll,”

\ J \ J
| |

data consistency £, over gradients

Existing methods work iteratively [1,2], requiring
~30 minutes for a 3D volume — not feasible

We address this with fast recon in ~1 second

[1] de Rochefort et al., Magn Reson Med 2010
[2] Bilgic et al., Neurolmage 2012



Solution of inverse problem is facilitated by regularization that
Imposes prior knowledge [1]

; 2
x = argmin, |l — F'DFx|l," + 1~ [|Gxll,”

\ J \ J
| |

data consistency £, over gradients

Solution can be evaluated in closed-form

x = (FID?F + 1- G"G)"'F'DF¢

The minimizer can be computed efficiently given that the
matrix inversion is rapidly performed

[1] de Rochefort et al., Magn Reson Med 2010



Solution can be evaluated in closed-form

x = (FD2F + 1- GHG) " 'F{DF¢
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Gx — FH ExF where E,(i,i) = 1 — o (—2mV =1k (i,i)/Ny)



Solution can be evaluated in closed-form

¥ = (FID2F + 1 - G"G) 'F/DF¢

Gradient along x-axis can be represented in k-space by
multiplication with a diagonal matrix E,

Gx — FH ExF where E,(i,i) = 1 — o (—2mV =1k (i,i)/Ny)

E, is simply the k-space representation of the difference
operator 0, — O,_q



Solution can be evaluated in closed-form

x = (FD2F + 1- GHG) " 'F{DF¢

Gradient along x-axis can be represented in k-space by
multiplication with a diagonal matrix E,

Gx — FH ExF where E,(i,i) = 1 — o (—2mV =1k (i,i)/Ny)

With this formulation, closed-form solution becomes
x =F'D[D*+1-(Ex +ES +EZ)] " Fo

| ]
I

all matrices diagonal




Solution can be evaluated in closed-form

x = (FD2F + 1- GHG) " 'F{DF¢

Gradient along x-axis can be represented in k-space by
multiplication with a diagonal matrix E,,

Gx — FH ExF where E,(i,i) = 1 — o (—2mV =1k (i,i)/Ny)

With this formulation, closed-form solution becomes

x = FID[D? + A-(E2 + E§ +E2)] 1 F¢

Total cost: Two FFTs and multiplication of diagonal matrices



Proposed closed-form method is 1000-times faster than
iterative Conjugate Gradient solver in [1,2]
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Proposed closed-form method is 1000-times faster than
iterative Conjugate Gradient solver in [1,2]

Proposed method yields exact minimizer while iterative
methods converge to it

Automatic selection of regularization parameter A is possible:
Trace L-curve with closed-form method in a minute

Combined with fast background removal methods like
SHARP [3], enables real-time QSM

[1] de Rochefort et al., MRM 2010
[2] Bilgic et al., Neuroimage 2012
[3] Schweser et al., MRM 2012



Proposed method:
Closed form QSM

Previous method:

lterative QSM with Conjugate Gradient [1,2]
converges to closed-form solution

[1] de Rochefort et al., MRM 2010
[2] Bilgic et al., Neuroimage 2012
[3] Shmueli et al., MRM 2009



Proposed method:
Closed form QSM

Previous method:

lterative QSM with Conjugate Gradient [1,2]
converges to closed-form solution

Initialize with Thresholded K-space Division map [3]

Terminate when change in susceptibility is less than 1%

[1] de Rochefort et al., MRM 2010
[2] Bilgic et al., Neuroimage 2012
[3] Shmueli et al., MRM 2009



Numerical Phantom

Three compartments (gray, white, CSF) with constant y
Phase ¢ computed from true y, and Gaussian noise added

Regularization param A chosen to minimize RMSE in y recon

[1] Liu et al., NMR in Biomed 2011



Numerical Phantom

Three compartments (gray, white, CSF) with constant y
Phase ¢ computed from true y, and Gaussian noise added

Regularization param A chosen to minimize RMSE in y recon

In Vivo 3D SPGR
Healthy subject at 1.5T with resolution 0.94x0.94x2.5mm?3

Regularization parameter A chosen based on L-curve

Background phase removal with dipole fitting [1]

Computations done on workstation with 32 CPU processors
and 128 GB memory

[1] Liu et al., NMR in Biomed 2011



Numerical Phantom error due to noise:
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Numerical Phantom

Noisy phase ¢

error due to noise:
5.0% RMSE

0.01 ppm

—-0.01 ppm

QSM Method Recon Time Error relative to True y
Proposed Closed-Form 1.1 seconds 16.1 % RMSE
Conjugate Grad, 80 iters 33 minutes 16.8 % RMSE




In Vivo QSM

Tissue phase ¢

0.04 ppm

—0.04 ppm

0.13 ppm

-0.13 ppm

(Truex
not known

Closed-form and Iterative QSM difference: 0.6%
1.3-1073 ppm

MAGNIFIED 100 TIMES ~1.3:107 ppm



In Vivo QSM

Tissue phase ¢

QSM Method Recon Time
Proposed Closed-Form 0.6 seconds
Conjugate Gradient, 80 iters 18 minutes
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Computing y for 25 different values of A: 50 seconds
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Largest curvature on

L-curve: 4 = 0.013

Curvature of L-curve

-3 -2
10, 10
Regularization Parameter 3

Computing y for 25 different values of A: 50 seconds

Find optimal A by computing the curvature of L-curve
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Proposed closed form recon for L2-regularized QSM

1000-times faster recon compared to Conjugate Gradient
solver [1,2]

Automatic selection for A feasible with L-curve in a minute

Software Download:

[1] de Rochefort et al., MRM 2010
[2] Bilgic et al., Neuroimage 2012


http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html
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