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 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility 𝝌 
 

 Susceptibility correlates well with tissue iron concentration, 

especially in iron rich deep gray matter structures [1,2] 
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Quantitative Susceptibility Mapping (QSM) 
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Regularized QSM 

 Solution of inverse problem is facilitated by regularization that 

imposes prior knowledge [1] 
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data consistency ℓ2 over gradients 

[1] de Rochefort et al., Magn Reson Med 2010 
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 Prior: underlying susceptibility map is smooth 
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 Existing methods work iteratively [1,2], requiring              

    ~30 minutes for a 3D volume   →   not feasible  
 

 We address this with fast recon in ~1 second  
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Regularized QSM 

 Solution of inverse problem is facilitated by regularization that 

imposes prior knowledge [1] 

 

 

 

 

 
 

 Solution can be evaluated in closed-form 

 

 

 The minimizer can be computed efficiently given that the 

matrix inversion is rapidly performed 
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Fast Regularized QSM 

 Solution can be evaluated in closed-form 

 

 

 

 

 

 

 

 

𝝌 = (𝐅𝐻𝐃2𝐅 + 𝜆 ∙ 𝐆𝐻𝐆)−1𝐅𝐻𝐃𝐅𝝓 
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multiplication with a diagonal matrix 𝐄𝒙 
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 𝐄𝒙 is simply the k-space representation of the difference 

operator 𝛿𝑥 − 𝛿𝑥−1 
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 Total cost: Two FFTs and multiplication of diagonal matrices 
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Contributions 

 Proposed closed-form method is 1000-times faster than 

iterative Conjugate Gradient solver in [1,2] 
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 Combined with fast background removal methods like 

SHARP [3], enables real-time QSM  
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Comparison of methods 

 Proposed method: 
 

Closed form QSM  

 
 Previous method: 

 

Iterative QSM with Conjugate Gradient [1,2] 

 converges to closed-form solution 
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Comparison of methods 

 Proposed method: 
 

Closed form QSM 

 
 Previous method: 

 

Iterative QSM with Conjugate Gradient [1,2] 

 converges to closed-form solution 
 

Initialize with Thresholded K-space Division map [3] 
 

Terminate when change in susceptibility is less than 1% 
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Regularized QSM Methods 

 Numerical Phantom 
 

Three compartments (gray, white, CSF) with constant 𝝌 
 

Phase 𝝓 computed from true 𝝌, and Gaussian noise added 
 

Regularization param 𝜆 chosen to minimize RMSE in 𝝌 recon 
 

[1] Liu et al., NMR in Biomed 2011 



Regularized QSM Methods 

 Numerical Phantom 
 

Three compartments (gray, white, CSF) with constant 𝝌 
 

Phase 𝝓 computed from true 𝝌, and Gaussian noise added 
 

Regularization param 𝜆 chosen to minimize RMSE in 𝝌 recon 
 

 In Vivo 3D SPGR 
 

Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm3 

 

Regularization parameter 𝜆 chosen based on L-curve 
 

Background phase removal with dipole fitting [1] 

 

 Computations done on workstation with 32 CPU processors 

and 128 GB memory  

[1] Liu et al., NMR in Biomed 2011 



Numerical Phantom 

Noisy phase 𝝓 
 error due to noise: 

 5.0% RMSE  

0.01 ppm 

−0.01 ppm 

Closed-form QSM in 1.1 seconds 

0.03 ppm 

−0.03 ppm 

Closed-form QSM error relative to True 𝝌  

0.03 ppm 

−0.03 ppm MAGNIFIED 3 TIMES 

True 𝝌 

known 



Numerical Phantom 

Noisy phase 𝝓 
 error due to noise: 

 5.0% RMSE  

0.01 ppm 

−0.01 ppm 

Closed-form QSM in 1.1 seconds 

0.03 ppm 

−0.03 ppm 

QSM Method Recon Time Error relative to True 𝝌 

Proposed Closed-Form  1.1 seconds 16.1 % RMSE 

Conjugate Grad, 80 iters 33 minutes 16.8 % RMSE 



In Vivo QSM 
Tissue phase 𝝓 

 
0.04 ppm 

−0.04 ppm 

Closed-form QSM in 0.6 seconds 

0.13 ppm 

−0.13 ppm 

Closed-form and Iterative QSM difference: 0.6% 
1.3∙10−3 ppm 

−1.3∙10 −3 ppm 
MAGNIFIED 100 TIMES 

True 𝝌    

not known 



In Vivo QSM 
Tissue phase 𝝓 

 

Closed-form QSM in 0.6 seconds 

QSM Method Recon Time 

Proposed Closed-Form  0.6 seconds 

Conjugate Gradient, 80 iters 18 minutes 

0.04 ppm 

−0.04 ppm 

0.13 ppm 

−0.13 ppm 



Tracing the L-curve 

𝐆𝝌 2 

𝝓 − 𝐅𝐻𝐃𝐅𝝌 2 

 Computing 𝜒 for 25 different values of 𝜆: 50 seconds 



Tracing the L-curve 

𝐆𝝌 2 

𝝓 − 𝐅𝐻𝐃𝐅𝝌 2 

Largest curvature on 

L-curve: 𝝀 = 𝟎. 𝟎𝟏𝟑 

 Computing 𝜒 for 25 different values of 𝜆: 50 seconds 
 

 Find optimal 𝜆 by computing the curvature of L-curve 
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Tracing the L-curve 

𝐆𝝌 2 

𝝓 − 𝐅𝐻𝐃𝐅𝝌 2 
Under- 

regularized 

𝜆 = 0.001 

Optimally-regularized 

𝜆 = 0.013 

Over-regularized  

𝜆 = 0.091 



Conclusion 

 

 Proposed closed form recon for L2-regularized QSM 

 

 1000-times faster recon compared to Conjugate Gradient 

solver [1,2] 

 

 Automatic selection for 𝜆 feasible with L-curve in a minute  

 
 Software Download: 

 

  http://web.mit.edu/berkin/www/software.html 
 

[1] de Rochefort et al., MRM 2010 

[2] Bilgic et al., Neuroimage 2012 

http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html
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