

Fast DSI Reconstruction with Trained Dictionaries

Berkin Bilgic¹, Itthi Chatnuntawech², Kawin Setsompop^{1,3}, Stephen F. Cauley¹, Lawrence L. Wald^{1,4}, Elfar Adalsteinsson^{2,4}

¹Martinos Center for Biomedical Imaging, Charlestown, MA, USA ²MIT, Cambridge, MA USA

³Harvard Medical School, Boston, MA, USA

⁴Harvard-MIT Health Sciences and Technology, Cambridge, MA USA

Declaration of Relevant Financial Interests or Relationships

Speaker Name: Berkin Bilgic

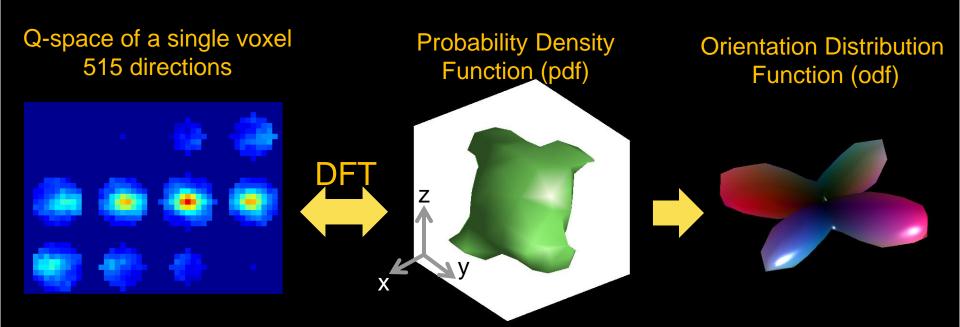
I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.

Diffusion Spectrum Imaging (DSI)

- DSI offers a complete description of water diffusion
- And reveals complex distributions of fiber orientations
- However, DSI requires full sampling of q-space

Diffusion Spectrum Imaging (DSI)

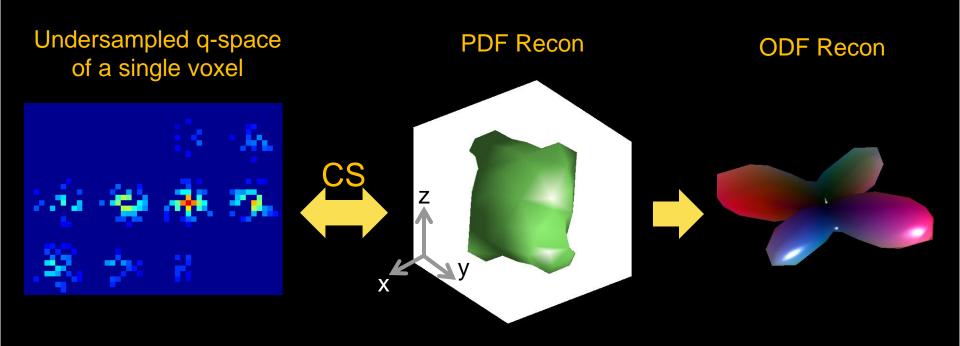
- DSI offers a complete description of water diffusion
- And reveals complex distributions of fiber orientations
- However, DSI requires full sampling of q-space



Sampling full q-space takes ~1 hour

Undersampled DSI

- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing



- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
 - i. Wavelet & Total Variation [1]

$$\min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_2^2 + \alpha \cdot \|\boldsymbol{\Psi}\boldsymbol{p}\|_1 + \beta \cdot \mathrm{TV}(\boldsymbol{p})$$
 undersampled pdf q-samples wavelet total variation

- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
 - i. Wavelet & Total Variation [1]

$$min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_{2}^{2} + \alpha \cdot \|\boldsymbol{\Psi}\boldsymbol{p}\|_{1} + \beta \cdot \mathrm{TV}(\boldsymbol{p})$$

- ii. Our previous work: Dictionary-FOCUSS [2]
 - □ Create a dictionary D from a training dataset of pdfs using K-SVD algorithm [3] → tailored for sparse representation
 - Impose sparsity constraint via FOCUSS algorithm [4] by solving

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x=q$

^{1.} Menzel *et al* MRM 2011

^{2.} Bilgic et al MRM 2012

^{3.} Aharon et al IEEE TSP 2006

^{4.} Gorodnitsky et al IEEE TSP 1997

- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
 - i. Wavelet & Total Variation [1]

$$min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_{2}^{2} + \alpha \cdot \|\boldsymbol{\Psi}\boldsymbol{p}\|_{1} + \beta \cdot TV(\boldsymbol{p})$$

- ii. Our previous work: Dictionary-FOCUSS [2]
 - □ Create a dictionary D from a training dataset of pdfs using K-SVD algorithm [3] → tailored for sparse representation
 - ☐ Impose sparsity constraint via FOCUSS algorithm [4] by solving

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x=q$

Dictionary transform coefficients

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet & TV [2]

- Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet & TV [2]
- Both Compressed Sensing recons are iterative, with processing times up to 1 sec / voxel

- Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet & TV [2]
- Both Compressed Sensing recons are iterative, with processing times up to 1 sec / voxel
- Full-brain recon for 10⁵ voxels: ~ 1 DAY of computation

We propose two L2-based methods:

Proposed I: Principal Component Analysis (PCA)

- Summarize the training dataset with dominant eigenvectors
- Simple training and recon: linear algebra

Proposed II: Dictionary-L2

- Instead of L1-, apply L2-regularization wrt dictionary
- Fast recon with closed form solution

- We propose two L2-based methods:
- Proposed I: Principal Component Analysis (PCA)
- ii. Proposed II: Dictionary-L2
- Contributions:
 - The two proposed methods are 100-fold faster with image quality similar to Dictionary-FOCUSS

- We propose two L2-based methods:
- i. Proposed I: Principal Component Analysis (PCA)
- ii. Proposed II: Dictionary-L2
- Contributions:
 - The two proposed methods are 100-fold faster with image quality similar to Dictionary-FOCUSS
 - We show that crucial component is presence of dictionary, not the sparsity constraint

- We propose two L2-based methods:
- i. Proposed I: Principal Component Analysis (PCA)
- ii. Proposed II: Dictionary-L2
- Contributions:
 - The two proposed methods are 100-fold faster with image quality similar to Dictionary-FOCUSS
 - We show that crucial component is presence of dictionary, not the sparsity constraint
 - At 3-fold acceleration, proposed recons comparable to fully-sampled data in pdf, odf and fiber domains

 PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - \mathbf{p}_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^H$

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - \boldsymbol{p}_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^H$

Pick the first T columns of ${f Q}$ corresponding to largest eigvals: ${f Q}_T$

$$pca = \mathbf{Q}_T^H(p - p_{mean})$$

T - dimensional pca coefficients

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - \boldsymbol{p}_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^H$

Pick the first T columns of ${f Q}$ corresponding to largest eigvals: ${f Q}_T$

$$pca = \mathbf{Q}_T^H(p - p_{mean})$$

The location of pca in the pdf space,

$$p_T = \mathbf{Q}_T p c a + p_{mean}$$

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$

In PCA coordinates,

$$min_{pca} \|\mathbf{F}_{\Omega}\mathbf{Q}_{T}pca - (\mathbf{q} - \mathbf{F}_{\Omega}p_{mean})\|_{2}^{2}$$

- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$

In PCA coordinates,

$$min_{pca} \|\mathbf{F}_{\Omega}\mathbf{Q}_{T}pca - (\mathbf{q} - \mathbf{F}_{\Omega}p_{mean})\|_{2}^{2}$$

Closed-form solution:

$$\widetilde{pca} = \operatorname{pinv}(\mathbf{F}_{\Omega}\mathbf{Q}_{T})(\mathbf{q} - \mathbf{F}_{\Omega}\mathbf{p}_{mean})$$
compute once

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x = q$

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x = q$

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

• Solution:
$$\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$$

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x = q$

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

• Solution: $\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$

Singular Value Decomposition: $\mathbf{F}_{\Omega}\mathbf{D} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^{H}$

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x = q$

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

• Solution: $\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$

$$\mathbf{\widetilde{x}} = \mathbf{V}\mathbf{\Sigma}^{+}\mathbf{U}^{H}q$$

$$\mathbf{\Sigma}^{+} = (\mathbf{\Sigma}^{H}\mathbf{\Sigma} + \lambda\mathbf{I})^{-1}\mathbf{\Sigma}^{H}$$
 compute once

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x=q$

Dictionary D obtained by K-SVD training

Solution:
$$\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$$

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that $\mathbf{F}_{\Omega}\mathbf{D}x=q$

Dictionary D obtained by K-SVD training

• Solution:
$$\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$$

Proposed: use training dataset as dictionary, D = P

Both recon and training simplified

DSI Acquisition

- 2.3 mm isotropic with b_{max} = 8000 s/mm² at 3T
- Connectom gradients and 64-chan head coil [1]
- 515 q-space points collected in 50 min
- Two subjects scanned → dictionary training is based on a subject different from the test subject

Comparison of methods

- Previous methods:
 - i. CDF 9/7 Wavelet & TV [1,2]
 - ii. Dictionary-FOCUSS [3]
- New methods:
 - iii. Proposed I: PCA
 - iv. Proposed II:Dictionary-L2

^{1.} Menzel et al MRM 2011

^{2.} Merlet et al ISMRM 2012

^{3.} Bilgic et al MRM 2012

Comparison of methods

- Previous methods:
 - i. CDF 9/7 Wavelet & TV [1,2]
 - ii. Dictionary-FOCUSS [3]
- New methods:
 - iii. Proposed I: PCA
 - iv. Proposed II: Dictionary-L2
- Recon experiments at accelerations R = 3, 5 and 9
- Compare to fully-sampled in terms of pdf, odf and fiber tracts

^{1.} Menzel et al MRM 2011

^{2.} Merlet et al ISMRM 2012

^{3.} Bilgic et al MRM 2012

Comparison of methods

- Previous methods:
 - i. CDF 9/7 Wavelet & TV [1,2]
 - ii. Dictionary-FOCUSS [3]
- New methods:
 - iii. Proposed I: PCA
 - iv. Proposed II: Dictionary-L2
- Comparison to low-noise data:
 - Acquire 10 average data at 5 q-space points



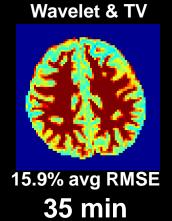
Disentangle RMSE due to recon error and noise

PDF Recon Error Maps

Test data: Subject A, Slice 40

Training data: Subject B, Slice 30

Acceleration R = 3



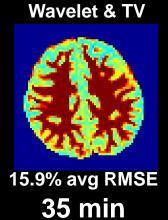
7.6% avg RMSE
11 min

PDF Recon Error Maps

Test data: Subject A, Slice 40

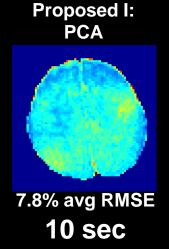
Training data: Subject B, Slice 30

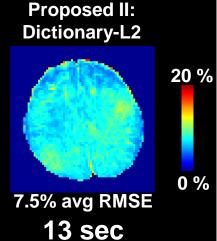
Acceleration R = 3



Dictionary-FOCUSS





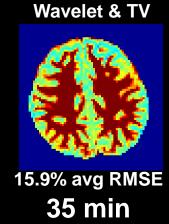


PDF Recon Error Maps

Test data: Subject A, Slice 40

Training data: Subject B, Slice 30

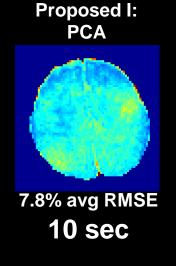
Acceleration R = 3

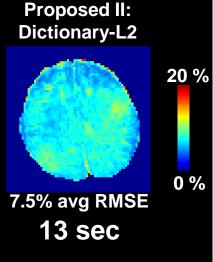


Dictionary-FOCUSS

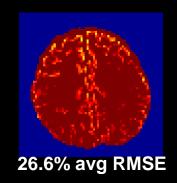
7.6% avg RMSE

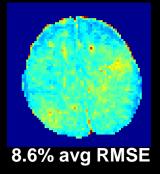
11 min

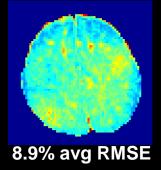


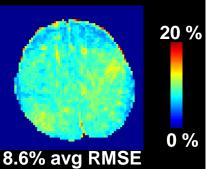


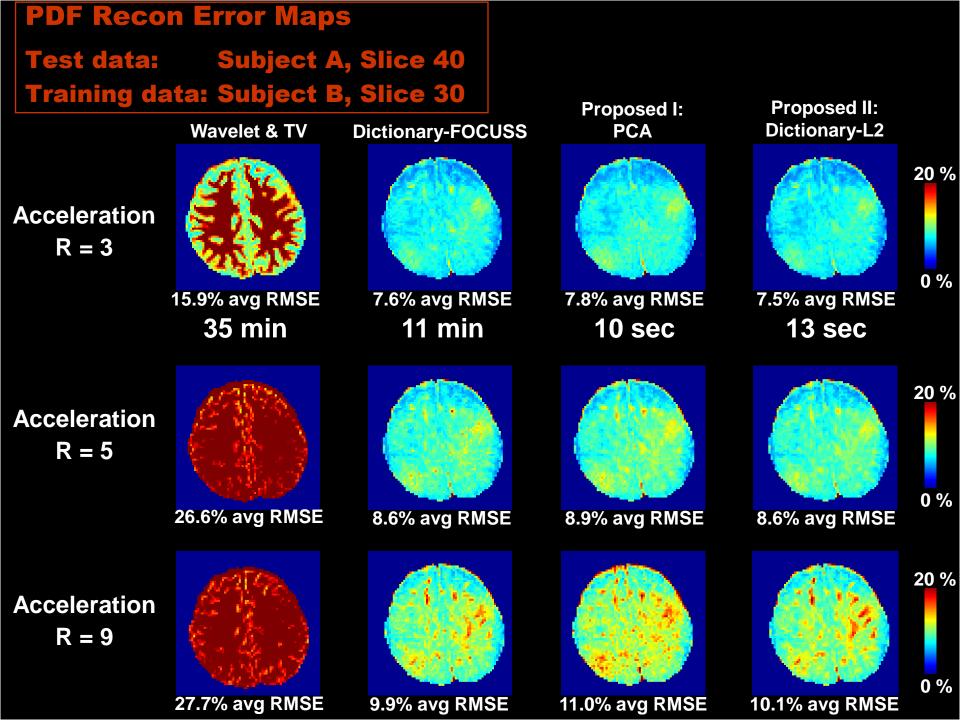
Acceleration R = 5









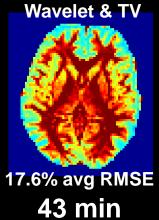


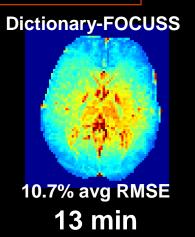
PDF Recon Error Maps

Test data: Subject B, Slice 25

Training data: Subject A, Slice 30

Acceleration R = 3



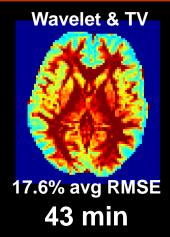


PDF Recon Error Maps

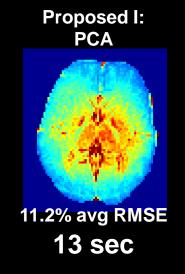
Test data: Subject B, Slice 25

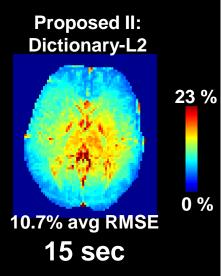
Training data: Subject A, Slice 30

Acceleration R = 3

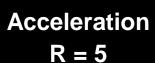


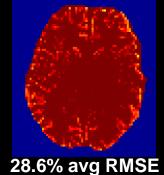
10.7% avg RMSE
13 min



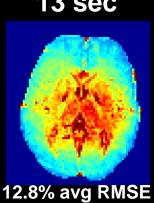


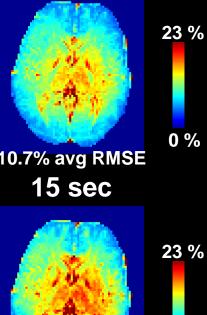
PDF Recon Error Maps Subject B, Slice 25 Test data: Training data: Subject A, Slice 30 Proposed II: Proposed I: **Dictionary-L2 PCA Wavelet & TV Dictionary-FOCUSS Acceleration** R = 317.6% avg RMSE **10.7% avg RMSE 11.2% avg RMSE 10.7% avg RMSE** 43 min 13 min 15 sec 13 sec





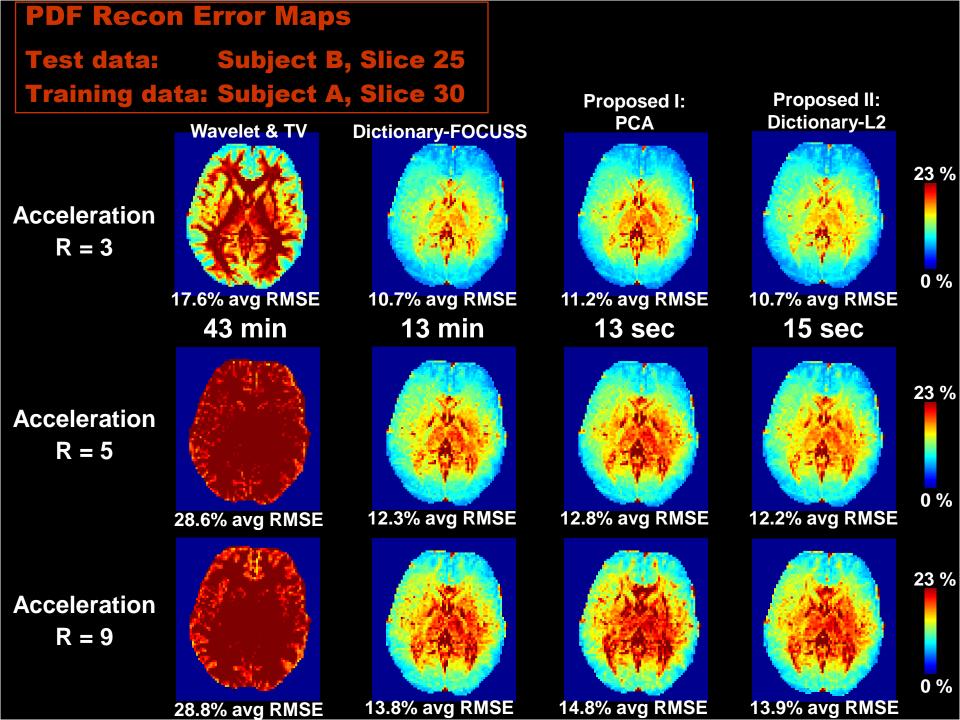
12.3% avg RMSE

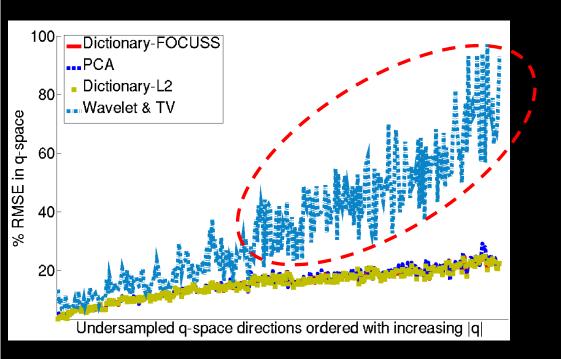




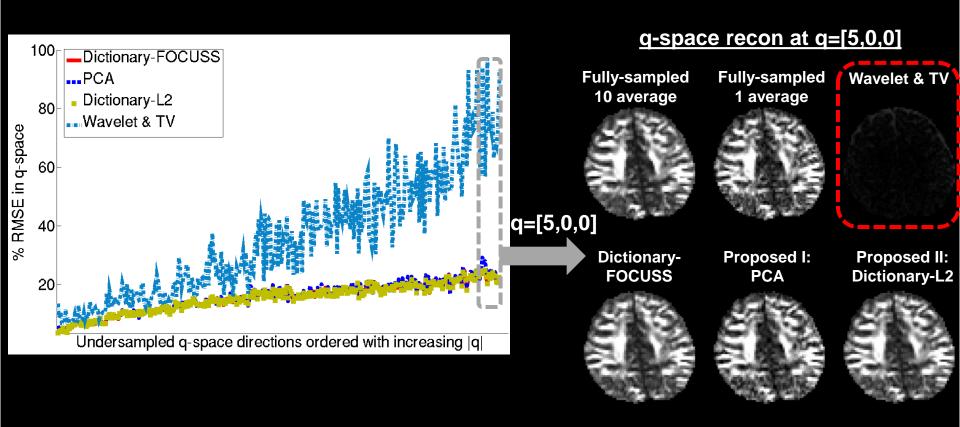
12.2% avg RMSE

0 %

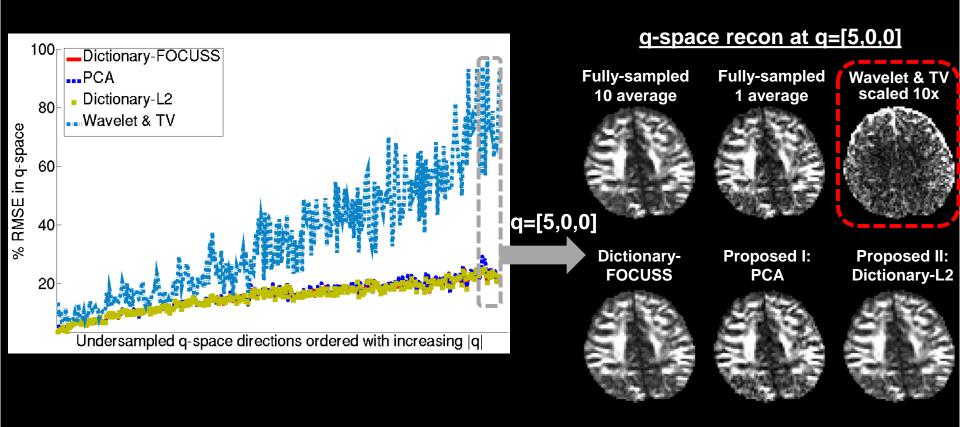




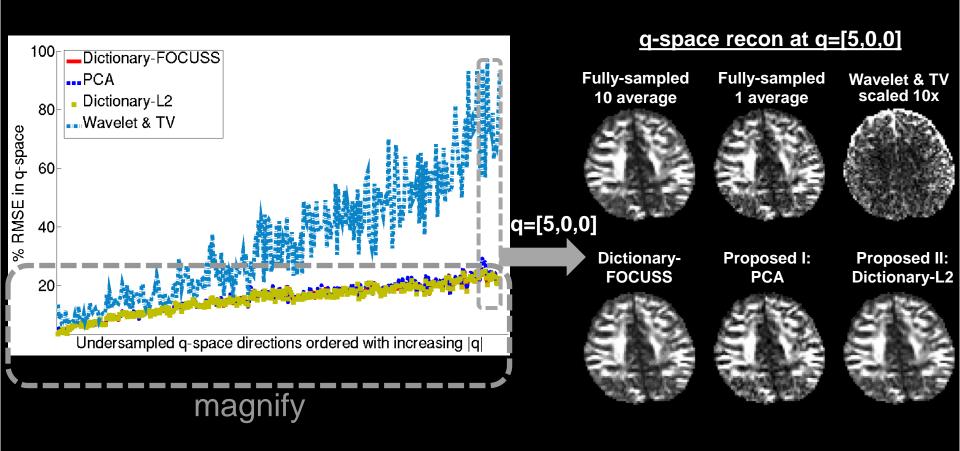
- Wavelet & TV : large error at outer q-space
- Dictionary-based methods : mild increase in error



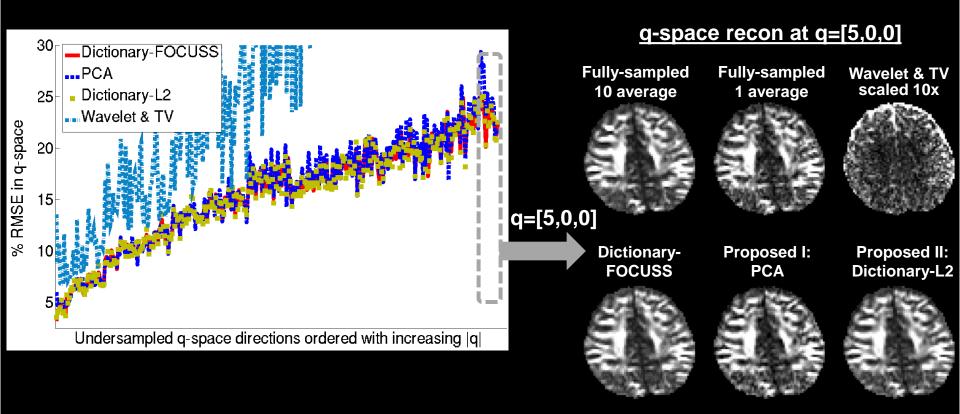
- Wavelet & TV : large error at outer q-space
- Dictionary-based methods : mild increase in error



- Wavelet & TV : large error at outer q-space
- Dictionary-based methods : mild increase in error



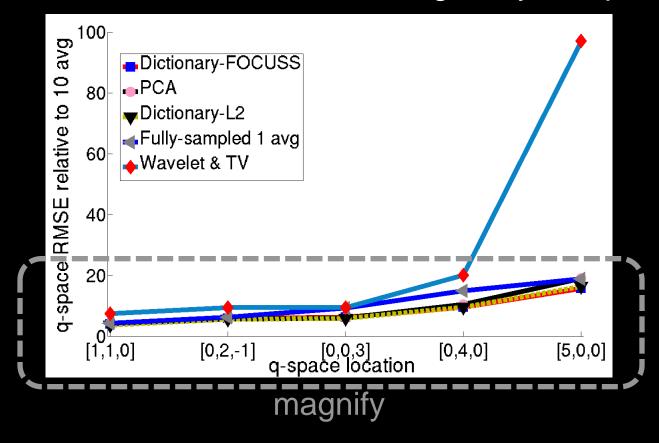
Compute RMSE in missing q-space relative to fully-sampled data



Dictionary-FOCUSS and the proposed methods have comparable performance

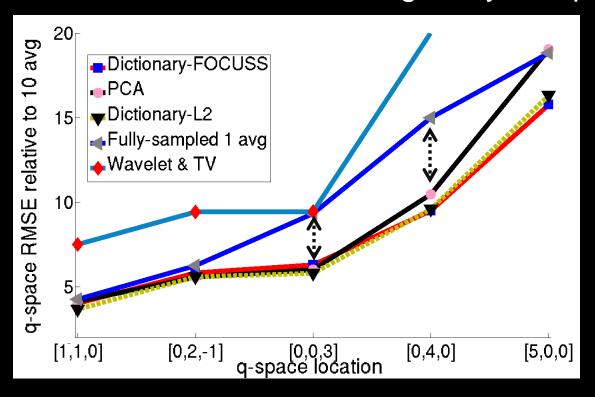
Comparison to Low-Noise dataset

Compute RMSEs relative to 10 average fully-sampled data

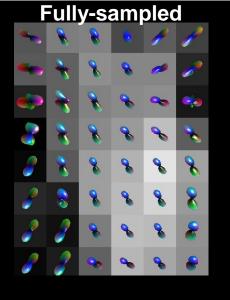


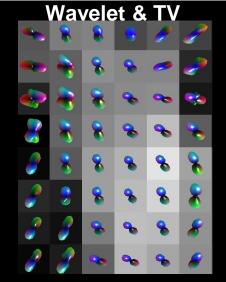
Comparison to Low-Noise dataset

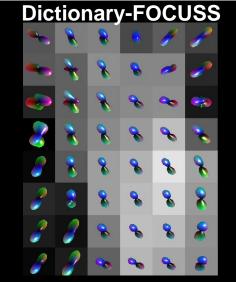
Compute RMSEs relative to 10 average fully-sampled data

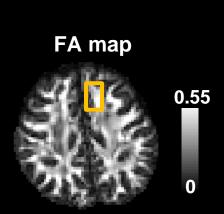


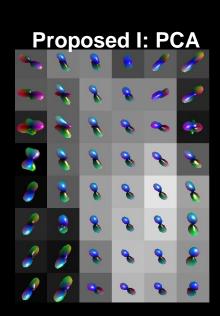
 At R = 3, all dictionary-based methods have less error than 1 average fully-sampled data

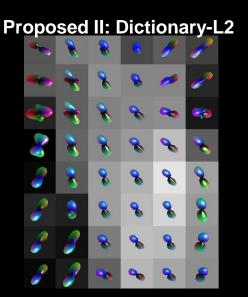


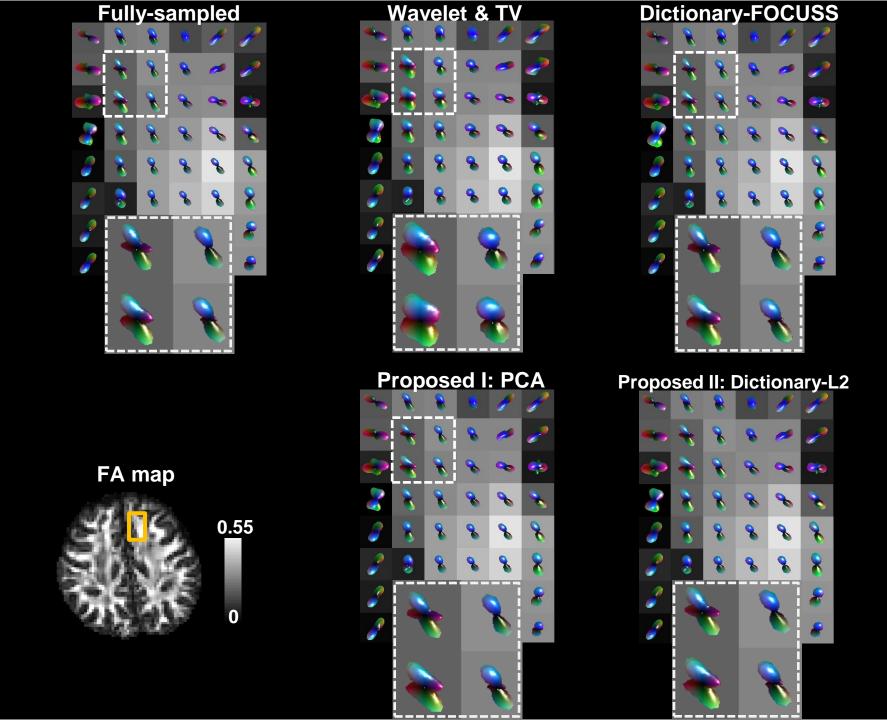


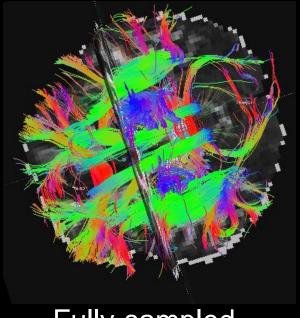




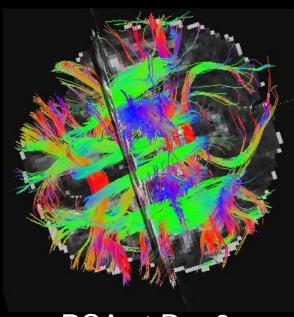




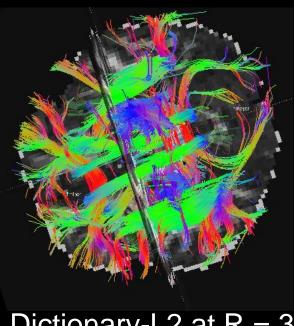




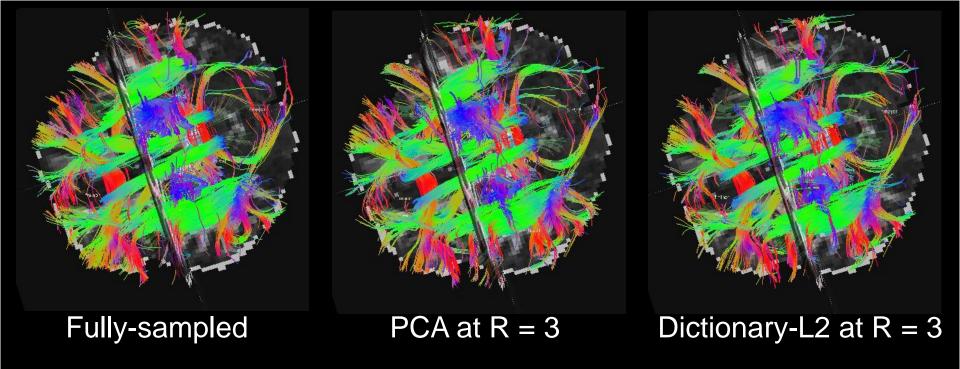
Fully-sampled



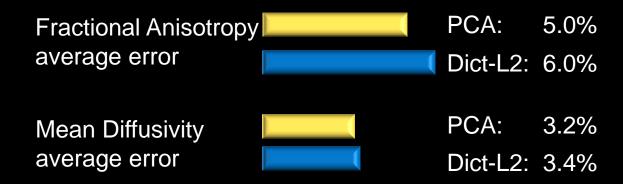
PCA at R = 3



Dictionary-L2 at R = 3



 Based on deterministic DSI tractography, 18 white matter pathways were automatically labeled [1]



Presence of dictionary is the crucial prior, not the sparsity constraint

- Presence of dictionary is the crucial prior, not the sparsity constraint
- The two proposed L2-regularized dictionary-based methods: simple, fast recon and trivial training step

- Presence of dictionary is the crucial prior, not the sparsity constraint
- The two proposed L2-regularized dictionary-based methods: simple, fast recon and trivial training step
- Proposed methods are comparable to L1-based Dictionary-FOCUSS in terms of pdf, odf and q-space recon quality

- Presence of dictionary is the crucial prior, not the sparsity constraint
- The two proposed L2-regularized dictionary-based methods: simple, fast recon and trivial training step
- Proposed methods are comparable to L1-based Dictionary-FOCUSS in terms of pdf, odf and q-space recon quality
- At 3-fold acceleration, proposed L2-based recons are comparable to fully-sampled acquisition

- Presence of dictionary is the crucial prior, not the sparsity constraint
- The two proposed L2-regularized dictionary-based methods: simple, fast recon and trivial training step
- Proposed methods are comparable to L1-based Dictionary-FOCUSS in terms of pdf, odf and q-space recon quality
- At 3-fold acceleration, proposed L2-based recons are comparable to fully-sampled acquisition
- Matlab code online:

http://web.mit.edu/berkin/www/software.html

Acknowledgments

Grants:

- K99EB012107, U01MH093765,
- * R01EB006847, R01EB007942,
- * R01EB000790, P41RR14075

Sponsors:

- MIT-CIMIT Medical Engineering Fellowship
- Siemens Healthcare
- Siemens-MIT Alliance