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 Joint reconstruction from undersampled acquisitions 

substantially improves reconstruction quality1  

 

 

 
[1] Bilgic et al. MRM, 2011 
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 Suppose that one of the contrasts can be acquired much 
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 If we fully-sample the fast contrast, can we use it to help 

reconstruct the others? 

 

 

 

Multi-contrast Acquisition 

Proton density T2 weighted T1 weighted 

contrast 



Observation model 

𝐅  𝒙 =  𝒚 

𝐅: partial Fourier transform 

𝒙: image to be estimated 

𝒚: undersampled k-space data 
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Data likelihood 

 Assuming that the k-space data is corrupted by complex-

valued Gaussian noise with 𝜎2 variance, 

p 𝒚  | 𝜹, 𝜎2 ∼ 𝓝(𝐅𝜹 − 𝒚 , 𝜎2) 

Gaussian 

likelihood 



Prior distribution on gradient coefficients 

 Bayesian CS places hyperparameters 𝛾 on each pixel, 
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 So that ith pixel is a zero-mean Gaussian with variance 𝛾𝑖 
 

 Multiplicative combination of all pixels give the full prior 

distribution, 

 

p 𝛿𝑖 | 𝛾𝑖 ∼ 𝓝(0, 𝛾𝑖 ) 

Gaussian prior 

p 𝜹 | 𝜸 ∼       𝓝(0, 𝛾𝑖 )  

𝑖
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𝐀−1 = (𝜎2𝐈 + 𝐅𝚪𝐅𝐻)−1 Inversion using Lanczos algorithm1 

[1] Seeger et al. MRM, 2010 
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EM algorithm for optimization 

 Expectation-maximization algorithm1 is used to estimate the 

hyperparameters and the posterior iteratively, 

Expectation step: 

𝝁 = 𝚪𝐅𝐻𝐀−1 𝒚  

𝚺 = 𝚪 − 𝚪𝐅𝐻𝐀−1𝐅𝚪 

Maximization step: 

𝛾𝑖 = |𝜇𝑖|
2/(1 − Σ𝑖𝑖/𝛾𝑖) 

[1] Wipf et al. IEEE Trans Signal Process, 2007 
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Using fully-sampled prior image 

 If we run EM iterations on the fully sampled image 𝜹𝑝𝑟𝑖𝑜𝑟  

Expectation step: 

Maximization step: 
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Use 𝛾𝑝𝑟𝑖𝑜𝑟 to initialize       

the EM iterations for 

undersampled images 
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sparseMRI1: Total Variation 

error: scaled 10× 
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Extended Shepp-Logan Phantoms 

Bayesian CS w/ prior 

3.0% RMSE 

fully-sampled prior 
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Turbo Spin Echo  

Late Echo 

fully-sampled prior 
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undersampled 
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sampling pattern 



Turbo Spin Echo  

sparseMRI1: Total Variation 

9.3% RMSE 

error: scaled 10× 
[1] Lustig et al. MRM, 2007 
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BCS w/ prior: 

Turbo Spin Echo  

Late Echo 

fully-sampled prior 

5.8% RMSE 

error: scaled 10× 

Bayesian CS w/ prior 

sparseMRI: 9.3% RMSE 

5.8% RMSE 



SRI24 atlas 

proton density 

fully-sampled prior 

T2 weighted 

undersampled 
T1 weighted 
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R = 4  
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SRI24 atlas 

sparseMRI1: Total Variation 

9.5% RMSE 

error: scaled 10× 

[1] Lustig et al. MRM, 2007 

sparseMRI: 9.5% RMSE 



SRI24 atlas 

Joint Bayesian CS1 

[1] Bilgic et al. MRM, 2011 

4.9% RMSE 

error: scaled 10× 

Joint BCS: 

sparseMRI: 9.5% RMSE 

4.9% RMSE 



SRI24 atlas 

Joint Bayesian CS w/ prior 

4.3% RMSE 

proton density 

fully-sampled prior 

error: scaled 10× 

Joint BCS: 
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 In a multi-contrast scan, one of the acquisitions may be much 

faster than the others (e.g. AutoAlign) 
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