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Multi-contrast data acquisition

“ In clinical MR, it is common to image the same region of
Interest under multiple contrast settings

“ This aims to increase the diagnostic power of MRI as tissues
exhibit different characteristics under different contrasts

*» For instance, SRI24 atlas! contains such multi-contrast data,

proton density
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Undersampling the kspace

** To reduce data acquisition time, it is possible to collect a
subset of k-space frequencies below the Nyquist rate due to

y=F,X+n

y e C* is the undersampled k - space data,
F, e C*"is the undersampled 2D - DFT matrix, with K < M

x e R is the spatialimage and,
neC" isthe noiseink - space
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Undersampling the kspace

** To reduce data acquisition time, it is possible to collect a
subset of k-space frequencies below the Nyquist rate due to

y=F,X+n

y e C* is the undersampled k - space data,
F, e C*"is the undersampled 2D - DFT matrix, with K < M

x e R is the spatialimage and,
neC" isthe noiseink - space

** This work aims to reconstruct multi-contrast data from
undersampled acquisitions by making use of

= Bayesian Compressed Sensing theory and,
= The similarity between the different contrast images.
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Similarity of multi-contrast images

“* Multi-contrast images possess unigque properties, e.qg.
Intensity levels at a given voxel
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Similarity of multi-contrast images

“+ Multi-contrast images possess unigue properties, e.g.
Intensity levels at a given voxel

“ At the same time exhibit common features. We make use of
the similarity in sparsity support under gradient transform

= Positions of non-zero coefficients are similar, even though
there is no perfect overlap

i
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Joint reconstruction algorithms

“* We consider two joint reconstruction algorithms,

[ Multi-contrast Reconstruction ]

T~

[ M-FOCUSS ] [ Joint Bayesian CS ]

+»» And first introduce the M-FOCUSS method.
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M-FOCUSS algorithm

“* First approach is based on using an existing algorithm, M-
FOCUSS! (Multiple-FOCal Underdetermined System Solver)
for joint reconstruction
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M-FOCUSS algorithm

*» First approach is based on using an existing algorithm, M-
FOCUSS! (Multiple-FOCal Underdetermined System Solver)
for joint reconstruction

“* M-FOCUSS places an f norm penalty on the gradient
coefficients of each |mage and an f norm penalty across the
multi-contrast images

- L , M L , 1/2
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M-FOCUSS algorithm

*» First approach is based on using an existing algorithm, M-
FOCUSS! (Multiple-FOCal Underdetermined System Solver)
for joint reconstruction

“* M-FOCUSS places an f norm penalty on the gradient
coefficients of each |mage and an f norm penalty across the
multi-contrast images

- L , M L , 1/2
meZHFQXi = Yill, +/1'Z(Z‘@Xi,j‘ ]
ia =1 \i=1

“* As proposed, it is constrained to use the same undersampling
pattern for each image

< And makes the strict assumption that the sparsity supports of
the images are the same.
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Joint reconstruction algorithms

“* We consider two joint reconstruction algorithms,

[ Multi-contrast Reconstruction ]

T~

M-FOCUSS ] [ Joint Bayesian CS ]

“* Next, we introduce our joint Bayesian reconstruction method.
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Sparse representation and data likelihood

“* To obtain a sparse representation of the images {xi }iL:l with L
different Eontrasts, we augment the undersampled k-space
data{y, |  as

(].—e_zm-”/n)- Y; (a), U)z Fo. 5 =y

5 eRM isi" verticalimage gradient

y, e C" isthe undersampled k - space data of 5
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Sparse representation and data likelihood

“* To obtain a sparse representation of the images {xi }iL:l with L
different E:ontrasts, we augment the undersampled k-space
data{y, |  as

(].—e_Z”ja’/n)- Yi (a), U)z Fo. 5 =y

5 eRM isi" verticalimage gradient

y, e C" isthe undersampled k - space data of 5

“* Modeling the k-space noise to be Gaussian with zero mean
and variance o2, the likelihood of observing the data becomes

i
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Bayesian analysis for joint inference

“* Next, we would like to impose a sparsity promoting Prior

distribution over the image gradients {5ix}_L:1 and {53} :

i=1

“* And compute their posterior distribution with the Bayes’ rule
using this prior, the likelihood term and the observed k-space
data {Yix};and vl

L

i=1

“* At the same time, we would like to enable information sharing
across the multi-contrast images.
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Bayesian analysis for joint inference

“* Next, we would like to impose a sparsity promoting prior

L

distribution over the image gradients {5ix}_L_l and {5iy}i:1,
“* And compute their posterior distribution with the Bayes’ rule
using this prior, the likelihood term and the observed k-space
data {v*}" and frol
i=1 =1
“* At the same time, we would like to enable information sharing
across the multi-contrast images.

“ To this end, we carry out the inference within a hierarchical
Bayesian model*

I -
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Hierarchical Bayesian Model for joint inference

*+ At the bottom layer, we have the undersampled k-space
observations, which are jointly parameterized by the
hyperparameters on the layer above.

coupled by
hyperparameters

a and a, = 62

k-space observations




Hierarchical Bayesian Model for joint inference

*+ At the bottom layer, we have the undersampled k-space
observations, which are jointly parameterized by the
hyperparameters on the layer above.

“* We capture the similarity in the gradient domain by defining
the hyperparameters a over the L gradient images

hypel‘parameter%
| | coupled by

hyperparameters
a and a, = 62

k-space observations




Hierarchical Bayesian Model for joint inference

*+ At the bottom layer, we have the undersampled k-space
observations, which are jointly parameterized by the
hyperparameters on the layer above.

“* We capture the similarity in the gradient domain by defining
the hyperparameters a over the L gradient images

“* The hyperparameters are in turn controlled by the hyper-
priors at the top level.

hyper-priors { a,b,c.d }

controlled by

l a’ b, C, d
hypemarameteri%%.g
| | coupled by

hyperparameters
a and a, = 62

k-space observations




Prior on the signal coefficients

“ The gradient coefficients are modeled to be drawn from a product
of zero mean Gaussians

M
plor )= B 7 10.7%)
j=1
and the precisions of the Gaussians are determined by a € R

“» And Gamma priors are placed over the hyperparameters a

c

ajc_lexp(—daj)

I'(c)

M
p(a|c,d)=] [Galajlc.d)  were Galejcd) =2
j=1
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Prior on the signal coefficients

“ The gradient coefficients are modeled to be drawn from a product
of zero mean Gaussians

M
p(éix | a): H‘/V(él)fj | O, OIJ_:L)
j=1
and the precisions of the Gaussians are determined by a € RV

“» And Gamma priors are placed over the hyperparameters a

M
p(a|c,d)=] [Galajlc.d)  were Galejcd) =2
j=1

I'(c)

c

ajc_lexp(—daj)

*» We can marginalize over the hyperparameters a and obtain the
marginal prior that enforces sparsity

p(5i)’( j)oc Student-t

sharp peak at 0
P& ) = [ P ) plaj e d)da; )
C,d ZO % .0
iy N - 5
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Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in
the same family,

p(Y;" | 6, a0) p(d; | @)
p(Yi" | @, )

P Y, cp) =
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Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in
the same family,

posterior

P( Y, @, )=

p(Y;" | 6, a0) p(d; | @)
p(Yi" | @, )

i



Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in
the same family,

likelihood

posterior [ X j X
[p(aix |Y a, 050) (Y |5I ’aO p(§| |a)

p(Yi" |a, ag)
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Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in

the same family,
likelihood prior
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Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in

the same family,
Gaussian Gaussian
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Computing the posterior for the signals
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Computing the posterior for the signals

“* Since the data likelihood and the signal prior are both
Gaussian, the posterior for the gradient coefficients is also in

the same family,
Gaussian Gaussian

p(Y;" 167", ) p(S;" | @)
p(Yi" |, o)

also Gaussian

P( Y, @, )=

5ix z‘/V(,“i’z:i)

Hi = B P Y
We only needto 5, = (g @] @;+A)>

estimate the a.’s .
: Azdlag(al,az,...,aM)
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Maximum Likelihood estimation of hyperparameters

< We seek point estimates for the hyperparameters a and o, In
a maximum likelihood framework.

1
maxB(a,aO)zmaxZIog p(YiX |a,ao)

a,on a,o i—1

“* Summation over the L images enables information sharing
while estimating the hyperparameters.

% Once the hyperparameters are estimated, the posterior for
the gradient coefficients ;" is determined based only on its
related k-space data Y;* due to,

.
Hi =0 L@ Y
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Reconstructing the images from their gradients

s+ After estimating the vertical and horizontal gradients

{§X} and {5y} , we seek the images {x }21 consistent

with these and the k-space data {y, }izl in a Least Squares

setting,

2
X. =argmin|o, x; — & 2+Ha X 5VH +k“F X —y,”

Xj

for1=1,..,L

where 0, and 0, are \ertical and horizontal gradient operators
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SRI24 Atlas

‘ k-space, 100 % of Nyquist rate

Inverse FFT Error: 0 % RMSE
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Lustig et al. | 9.4

k-space, 25 % of Nyquist rate

Lustig et al.t Error: 9.4 % RMSE
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Lustig et al. | 9.4

M-Focuss Il 3.2

k-space, 25 % of Nyquist rate

Same undersampling pattern

; M-FOCUSS! Error: 3.2 % RMSE
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Lustig et al. 9.4

M-Focuss Il 3.2
Joint Bayes . 2.3

k-space, 25 % of Nyquist rate

¥ ourBayesian CS  Error: 2.3 % RMSE




TSE Scans : in vivo acquisition

k-space
100 % of Nyquist rate

l

Inverse FFT

Error: 0 % RMSE
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Lustig et al.

k-space, 40 % of Nyquist rate

Lustig et al.l

Error: 9.4 % RMSE
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Lustig et al. :
k-space, 40 % of Nyquist rate Il Same undersampling pattern Jiii§

M-FOCUSS!

Error: 5.1 % RMSE
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Lustig et al.
M-Focuss Bl  5.1%
Joint Bayes - 3.6 %

k-space, 40 % of Nyquist rate |

Our Bayesian CS

Error: 3.6 % RMSE
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Extensions and Limitations

“* We assumed the multi-contrast images to be real-valued.
Extension to complex-valued images is possible by using a
mirror-symmetric sampling pattern and separating real and
Imaginary parts of the images.
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Extensions and Limitations

“* We assumed the multi-contrast images to be real-valued.
Extension to complex-valued images is possible by using a
mirror-symmetric sampling pattern and separating real and
Imaginary parts of the images.

“* Whereas the other two methods take under an hour, the
Bayesian method takes about 20 hours with this initial
Implementation.

“ Current work is on increasing the reconstruction speed using
= Graphics Processing Cards (GPUs) on the hardware front, and

= Employing variational Bayesian analysis on the algorithm front
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Other applications of joint reconstruction

(
|
|

Imglg_irlg_ L

\
: Multi-contrast
Reconstruction

: ‘ N

{Magnitude + Phase.:}- -{Structural + Spectra} M-FOCUSS

Joint Bayes
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Conclusion

“* We presented two joint reconstruction algorithms, M-FOCUSS
and joint Bayesian CS, that significantly improved reconstruction
guality of multi-contrast images from undersampled data.

“* While joint Bayesian method reduced reconstruction errors by
up to 4 times relative to a popular CS algorithm?, current
Implementation suffers from long reconstruction times.

<+» M-FOCUSS iIs a notable candidate that trades off reconstruction
guality and processing speed.
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