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Multi-contrast data acquisition

 In clinical MRI, it is common to image the same region of 

interest under multiple contrast settings

 This aims to increase the diagnostic power of MRI as tissues 

exhibit different characteristics under different contrasts

 For instance, SRI24 atlas1 contains such multi-contrast data, 
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 In clinical MRI, it is common to image the same region of 

interest under multiple contrast settings

 This aims to increase the diagnostic power of MRI as tissues 

exhibit different characteristics under different contrasts

 For instance, SRI24 atlas1 contains such multi-contrast data, 
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Undersampling the k-space

 To reduce data acquisition time, it is possible to collect a 

subset of k-space frequencies below the Nyquist rate due to
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Undersampling the k-space

 To reduce data acquisition time, it is possible to collect a 

subset of k-space frequencies below the Nyquist rate due to

 This work aims to reconstruct multi-contrast data from 

undersampled acquisitions by making use of

 Bayesian Compressed Sensing theory and,

 The similarity between the different contrast images.
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Similarity of multi-contrast images

Multi-contrast images possess unique properties, e.g. 

intensity levels at a given voxel 
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 At the same time exhibit common features.  We make use of 

the similarity in sparsity support under gradient transform
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Similarity of multi-contrast images

Multi-contrast images possess unique properties, e.g. 

intensity levels at a given voxel

 At the same time exhibit common features.  We make use of 

the similarity in sparsity support under gradient transform

 Positions of non-zero coefficients are similar, even though 

there is no perfect overlap
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Joint reconstruction algorithms

We consider two joint reconstruction algorithms,
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Multi-contrast Reconstruction

M-FOCUSS Joint Bayesian CSM-FOCUSS

 And first introduce the M-FOCUSS method. 



M-FOCUSS algorithm

 First approach is based on using an existing algorithm, M-

FOCUSS1 (Multiple-FOCal Underdetermined System Solver) 

for joint reconstruction
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 First approach is based on using an existing algorithm, M-

FOCUSS1 (Multiple-FOCal Underdetermined System Solver) 

for joint reconstruction

M-FOCUSS places an      norm penalty on the gradient 

coefficients of each image, and an      norm penalty across the 

multi-contrast images

 As proposed, it is constrained to use the same undersampling 

pattern for each image

 And makes the strict assumption that the sparsity supports of  

the images are the same.
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Joint Bayesian CS

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,
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Multi-contrast Reconstruction

M-FOCUSS Joint Bayesian CS

 Next, we introduce our joint Bayesian reconstruction method.



 To obtain a sparse representation of the images           with L

different contrasts, we augment the undersampled k-space 

data           as
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 To obtain a sparse representation of the images           with L

different contrasts, we augment the undersampled k-space 

data           as

Modeling the k-space noise to be Gaussian with zero mean 

and variance σ2, the likelihood of observing the data becomes
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Bayesian analysis for joint inference

 Next, we would like to impose a sparsity promoting prior 

distribution over the image gradients           and          ,  

 And compute their posterior distribution with the Bayes’ rule 

using this prior, the likelihood term and the observed k-space 

data           and

 At the same time, we would like to enable information sharing 

across the multi-contrast images. 
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Bayesian analysis for joint inference

 Next, we would like to impose a sparsity promoting prior 

distribution over the image gradients           and          ,  

 And compute their posterior distribution with the Bayes’ rule 

using this prior, the likelihood term and the observed k-space 

data           and

 At the same time, we would like to enable information sharing 

across the multi-contrast images. 

 To this end, we carry out the inference within a hierarchical 

Bayesian model1
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Hierarchical Bayesian Model for joint inference

 At the bottom layer, we have the undersampled k-space 

observations, which are jointly parameterized by the 

hyperparameters on the layer above. 

k-space observations

coupled by 

hyperparameters

α and α0 = σ−2

hyperparameters

Image 1 Image i Image L



Hierarchical Bayesian Model for joint inference

 At the bottom layer, we have the undersampled k-space 

observations, which are jointly parameterized by the 

hyperparameters on the layer above. 

We capture the similarity in the gradient domain by defining 

the hyperparameters α over the L gradient images

k-space observations

coupled by 

hyperparameters

α and α0 = σ−2

hyperparameters

Image 1 Image i Image L



Hierarchical Bayesian Model for joint inference

 At the bottom layer, we have the undersampled k-space 

observations, which are jointly parameterized by the 

hyperparameters on the layer above.

We capture the similarity in the gradient domain by defining 

the hyperparameters α over the L gradient images

 The hyperparameters are in turn controlled by the hyper-

priors at the top level. 

k-space observations

coupled by 

hyperparameters

α and α0 = σ−2

controlled by 

a, b, c, d

hyper-priors

hyperparameters

Image 1 Image i Image L



Prior on the signal coefficients

 The gradient coefficients are modeled to be drawn from a product 

of zero mean Gaussians

and the precisions of the Gaussians are determined by 

 And Gamma priors are placed over the hyperparameters α
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Prior on the signal coefficients

 The gradient coefficients are modeled to be drawn from a product 

of zero mean Gaussians

and the precisions of the Gaussians are determined by 

 And Gamma priors are placed over the hyperparameters α

 We can marginalize over the hyperparameters α and obtain the 

marginal prior that enforces sparsity
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,
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Computing the posterior for the signals

 Since the data likelihood and the signal prior are both 

Gaussian, the posterior for the gradient coefficients is also in 

the same family,

31

),...,,(A Mdiag  21

We only need to 

estimate the αi ’s 

GaussianGaussian
also Gaussian

),|(

)|(),|(
),,|(

0

0
0






αY

αδδY
αYδ

x
i

x
i

x
i

x
ix

i
x
i

p

pp
p 

 ii
x
i Σ,μδ N



Maximum Likelihood estimation of hyperparameters

We seek point estimates for the hyperparameters α and α0  in 

a maximum likelihood framework.

 Summation over the L images enables information sharing

while estimating the hyperparameters.

Once the hyperparameters are estimated, the posterior for 

the gradient coefficients       is determined based only on its 

related k-space data       due to, 
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Reconstructing the images from their gradients

 After estimating the vertical and horizontal gradients

and             , we seek the images            consistent

with these and the k-space data            in a Least Squares 

setting,
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Lustig et al.1 Error: 9.4 % RMSE
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M-FOCUSS1 Error: 3.2 % RMSE
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Our Bayesian CS   Error: 2.3 % RMSE
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We assumed the multi-contrast images to be real-valued. 

Extension to complex-valued images is possible by using a 

mirror-symmetric sampling pattern and separating real and 

imaginary parts of the images.
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Extensions and Limitations

We assumed the multi-contrast images to be real-valued. 

Extension to complex-valued images is possible by using a 

mirror-symmetric sampling pattern and separating real and 

imaginary parts of the images.

Whereas the other two methods take under an hour, the 

Bayesian method takes about 20 hours with this initial 

implementation.

 Current work is on increasing the reconstruction speed using

 Graphics Processing Cards (GPUs) on the hardware front, and

 Employing variational Bayesian analysis on the algorithm front
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Other applications of joint reconstruction
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Conclusion

 We presented two joint reconstruction algorithms, M-FOCUSS 

and joint Bayesian CS, that significantly improved reconstruction 

quality of multi-contrast images from undersampled data.

 While joint Bayesian method reduced reconstruction errors by 

up to 4 times relative to a popular CS algorithm1, current 

implementation suffers from long reconstruction times.

 M-FOCUSS is a notable candidate that trades off reconstruction 

quality and processing speed.  
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