

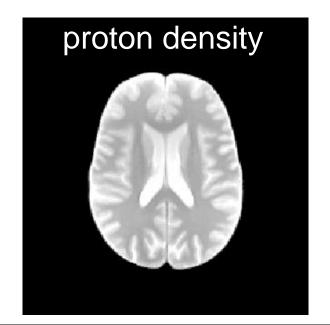
Joint Bayesian Compressed Sensing for Multi-contrast Reconstruction

Berkin Bilgic¹, Vivek K. Goyal¹, Elfar Adalsteinsson^{1,2}

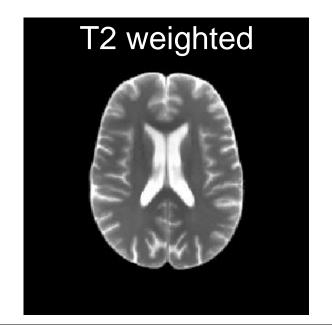
¹EECS, MIT, Cambridge, MA, United States

²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

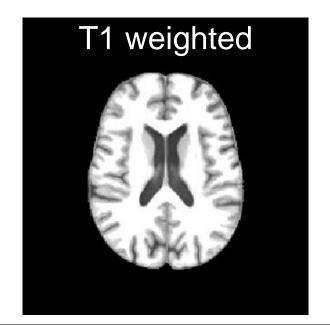
- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



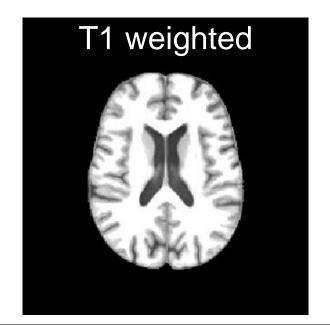
- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- For instance, SRI24 atlas¹ contains such multi-contrast data,



- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



- In clinical MRI, it is common to image the same region of interest under multiple contrast settings
- This aims to increase the diagnostic power of MRI as tissues exhibit different characteristics under different contrasts
- ❖ For instance, SRI24 atlas¹ contains such multi-contrast data,



Undersampling the k-space

❖ To reduce data acquisition time, it is possible to collect a subset of k-space frequencies below the Nyquist rate due to

$$y = \mathbf{F}_{\Omega} x + n$$

 $y \in \mathbb{C}^{K}$ is the undersampled k - space data,

 $\mathbf{F}_{\Omega} \in \mathbb{C}^{K \times M}$ is the undersampled 2D - DFT matrix, with K < M

 $x \in \mathbb{R}^{M}$ is the spatial image and,

 $n \in \mathbb{C}^{K}$ is the noise in k - space

Undersampling the k-space

To reduce data acquisition time, it is possible to collect a subset of k-space frequencies below the Nyquist rate due to

$$y = \mathbf{F}_{\Omega} x + n$$

 $y \in \mathbb{C}^{K}$ is the undersampled k - space data,

 $\mathbf{F}_{O} \in \mathbb{C}^{K \times M}$ is the undersampled 2D - DFT matrix, with K < M

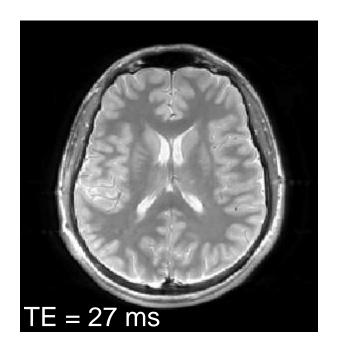
 $x \in \mathbb{R}^{M}$ is the spatial image and,

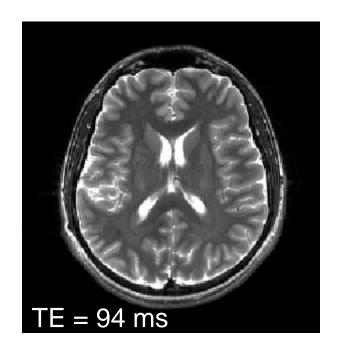
 $n \in \mathbb{C}^{K}$ is the noise in k - space

- This work aims to reconstruct multi-contrast data from undersampled acquisitions by making use of
 - Bayesian Compressed Sensing theory and,
 - The similarity between the different contrast images.

Similarity of multi-contrast images

Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel

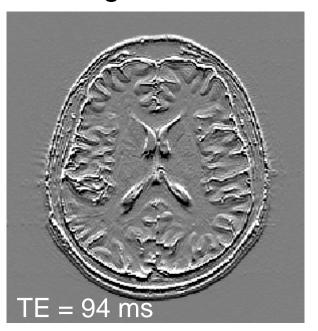




Similarity of multi-contrast images

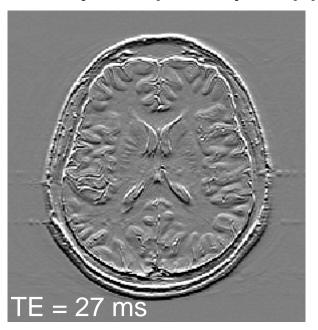
- Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel
- At the same time exhibit common features. We make use of the similarity in sparsity support under gradient transform

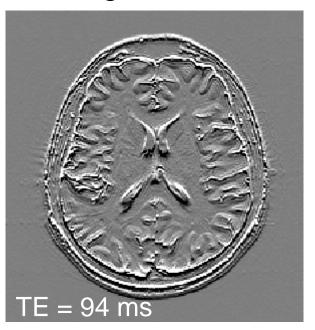




Similarity of multi-contrast images

- Multi-contrast images possess unique properties, e.g. intensity levels at a given voxel
- At the same time exhibit common features. We make use of the similarity in sparsity support under gradient transform

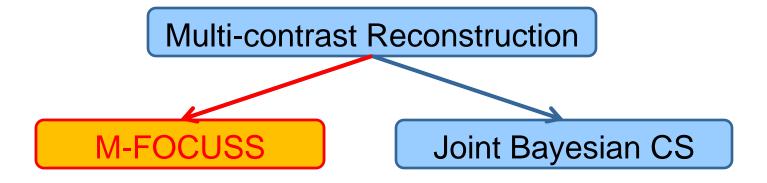




 Positions of non-zero coefficients are similar, even though there is no perfect overlap

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,



And first introduce the M-FOCUSS method.

M-FOCUSS algorithm

First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction

M-FOCUSS algorithm

- First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction
- * M-FOCUSS places an ℓ_1 norm penalty on the gradient coefficients of each image, and an ℓ_2 norm penalty across the multi-contrast images

$$\min_{\boldsymbol{x}_{i}} \sum_{i=1}^{L} \left\| \mathbf{F}_{\Omega} \boldsymbol{x}_{i} - \boldsymbol{y}_{i} \right\|_{2}^{2} + \lambda \cdot \sum_{i=1}^{M} \left(\sum_{i=1}^{L} \left| \partial \boldsymbol{x}_{i,j} \right|^{2} \right)^{1/2}$$

M-FOCUSS algorithm

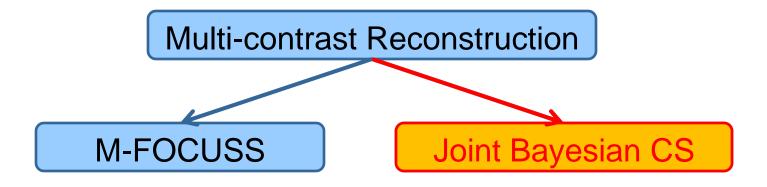
- First approach is based on using an existing algorithm, M-FOCUSS¹ (Multiple-FOCal Underdetermined System Solver) for joint reconstruction
- * M-FOCUSS places an ℓ_1 norm penalty on the gradient coefficients of each image, and an ℓ_2 norm penalty across the multi-contrast images

$$\min_{x_{i}} \sum_{i=1}^{L} \left\| \mathbf{F}_{\Omega} x_{i} - y_{i} \right\|_{2}^{2} + \lambda \cdot \sum_{j=1}^{M} \left(\sum_{i=1}^{L} \left| \partial x_{i,j} \right|^{2} \right)^{1/2}$$

- As proposed, it is constrained to use the same undersampling pattern for each image
- And makes the strict assumption that the sparsity supports of the images are the same.

Joint reconstruction algorithms

We consider two joint reconstruction algorithms,



Next, we introduce our joint Bayesian reconstruction method.

Sparse representation and data likelihood

 \clubsuit To obtain a sparse representation of the images $\{x_i\}_{i=1}^L$ with Ldifferent contrasts, we augment the undersampled k-space $data\{y_i\}_{i=1}^L$ as

$$\left(1 - e^{-2\pi j\omega/n}\right) \cdot \mathbf{y}_i(\omega, \upsilon) = \mathbf{F}_{\Omega_i} \, \boldsymbol{\delta}_i^x \equiv \mathbf{y}_i^x$$

 $\delta_i^x \in \mathbb{R}^M$ is i^{th} vertical image gradient

 $y_i^x \in \mathbb{C}^{K_i}$ is the undersampled k - space data of δ_i^x

Sparse representation and data likelihood

* To obtain a sparse representation of the images $\{x_i\}_{i=1}^L$ with L different contrasts, we augment the undersampled k-space data $\{y_i\}_{i=1}^L$ as

$$\left(1 - e^{-2\pi j\omega/n}\right) \cdot \mathbf{y}_i(\omega, \upsilon) = \mathbf{F}_{\Omega_i} \, \boldsymbol{\delta}_i^x \equiv \mathbf{y}_i^x$$

 $\delta_i^x \in \mathbb{R}^M$ is i^{th} vertical image gradient

 $y_i^x \in \mathbb{C}^{K_i}$ is the undersampled k - space data of δ_i^x

* Modeling the k-space noise to be Gaussian with zero mean and variance σ^2 , the likelihood of observing the data becomes

$$\mathbf{Y}_{i}^{x} = \left[\mathbf{Re}(\mathbf{y}_{i}^{x}), \mathbf{Im}(\mathbf{y}_{i}^{x}) \right]^{T} \\
\Phi_{i} = \left[\mathbf{Re}(\mathbf{F}_{\Omega_{i}}), \mathbf{Im}(\mathbf{F}_{\Omega_{i}}) \right]^{T} \\
\mathbf{p}(\mathbf{Y}_{i}^{x} / \delta_{i}^{x}, \sigma^{2}) = (2\pi\sigma^{2})^{-K_{i}} \exp\left(-\left\| \mathbf{Y}_{i}^{x} - \Phi_{i} \delta_{i}^{x} \right\|_{2}^{2} / 2\sigma^{2}\right)$$

Bayesian analysis for joint inference

- Next, we would like to impose a sparsity promoting prior distribution over the image gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$,
- And compute their posterior distribution with the Bayes' rule using this prior, the likelihood term and the observed k-space data $\{Y_i^x\}_{i=1}^L$ and $\{Y_i^y\}_{i=1}^L$
- At the same time, we would like to enable information sharing across the multi-contrast images.

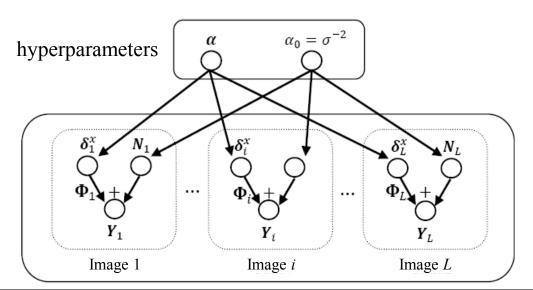
Bayesian analysis for joint inference

- Next, we would like to impose a sparsity promoting prior distribution over the image gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$,
- And compute their posterior distribution with the Bayes' rule using this prior, the likelihood term and the observed k-space data $\{Y_i^x\}_{i=1}^L$ and $\{Y_i^y\}_{i=1}^L$
- At the same time, we would like to enable information sharing across the multi-contrast images.
- To this end, we carry out the inference within a hierarchical Bayesian model¹

19

Hierarchical Bayesian Model for joint inference

At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.

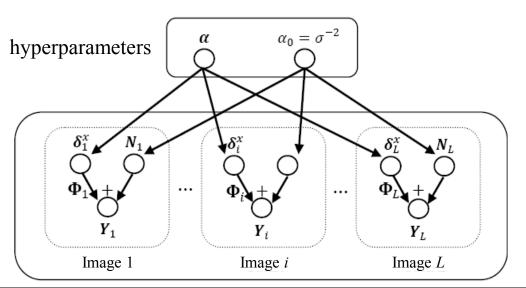


coupled by hyperparameters α and $\alpha_0 = \sigma^{-2}$

k-space observations

Hierarchical Bayesian Model for joint inference

- At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.
- * We capture the similarity in the gradient domain by defining the hyperparameters α over the L gradient images

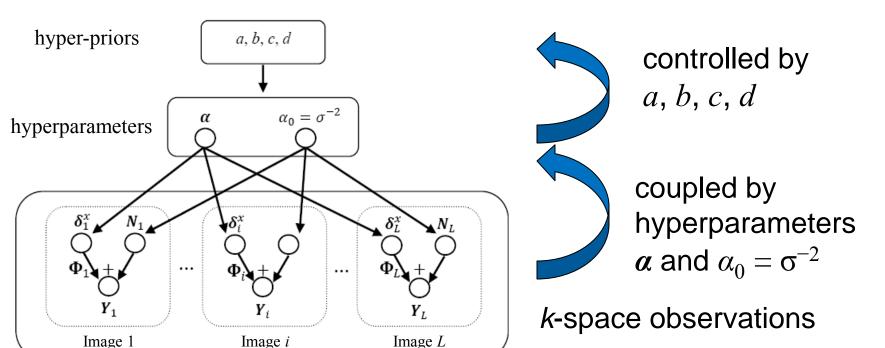


coupled by hyperparameters α and $\alpha_0 = \sigma^{-2}$

k-space observations

Hierarchical Bayesian Model for joint inference

- At the bottom layer, we have the undersampled *k*-space observations, which are jointly parameterized by the hyperparameters on the layer above.
- * We capture the similarity in the gradient domain by defining the hyperparameters α over the L gradient images
- The hyperparameters are in turn controlled by the hyperpriors at the top level.



Prior on the signal coefficients

The gradient coefficients are modeled to be drawn from a product of zero mean Gaussians

$$p(\boldsymbol{\delta}_{i}^{x} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(\boldsymbol{\delta}_{i,j}^{x} \mid 0, \alpha_{j}^{-1})$$

and the precisions of the Gaussians are determined by $\boldsymbol{\alpha} \in \mathbb{R}^{M}$

And Gamma priors are placed over the hyperparameters α

$$p(\boldsymbol{\alpha} \mid c, d) = \prod_{j=1}^{M} Ga(\alpha_{j} \mid c, d) \quad \text{where} \quad Ga(\alpha_{j} \mid c, d) = \frac{d^{c}}{\Gamma(c)} \alpha_{j}^{c-1} exp(-d\alpha_{j})$$

Prior on the signal coefficients

The gradient coefficients are modeled to be drawn from a product of zero mean Gaussians

$$p(\boldsymbol{\delta}_{i}^{x} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(\boldsymbol{\delta}_{i,j}^{x} \mid 0, \boldsymbol{\alpha}_{j}^{-1})$$

and the precisions of the Gaussians are determined by $\boldsymbol{\alpha} \in \mathbb{R}^{M}$

And Gamma priors are placed over the hyperparameters α

$$p(\boldsymbol{\alpha} \mid c, d) = \prod_{j=1}^{M} Ga(\alpha_j \mid c, d) \quad \text{where} \quad Ga(\alpha_j \mid c, d) = \frac{d^c}{\Gamma(c)} \alpha_j^{c-1} exp(-d\alpha_j)$$

 \diamond We can marginalize over the hyperparameters α and obtain the marginal prior that enforces sparsity $p(\delta_{i,j}^{x}) \propto \frac{1}{|\delta_{i,j}^{x}|}$ | Student-t

sharp peak at 0
$$p(\delta_{i,j}^x) = \int p(\delta_{i,j}^x/\alpha_j) p(\alpha_j \mid c,d) d\alpha_j$$

$$c,d = 0$$

$$p(\boldsymbol{\delta}_i^x | \boldsymbol{Y}_i^x, \boldsymbol{\alpha}, \alpha_0) = \frac{p(\boldsymbol{Y}_i^x | \boldsymbol{\delta}_i^x, \alpha_0) p(\boldsymbol{\delta}_i^x | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_i^x | \boldsymbol{\alpha}, \alpha_0)}$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{posterior}} = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

posterior
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

$$p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{posterior}} = \underbrace{\frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0})p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}}_{\text{likelihood} prior p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0})p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}$$

$$\underbrace{p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0})}_{\text{Gaussian}} = \underbrace{\frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}}_{\text{Gaussian}}_{\text{Gaussian}}$$

also Gaussian
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

Since the data likelihood and the signal prior are both Gaussian, the posterior for the gradient coefficients is also in the same family,

also Gaussian
$$p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{Y}_{i}^{x}, \boldsymbol{\alpha}, \alpha_{0}) = \frac{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\delta}_{i}^{x}, \alpha_{0}) p(\boldsymbol{\delta}_{i}^{x} | \boldsymbol{\alpha})}{p(\boldsymbol{Y}_{i}^{x} | \boldsymbol{\alpha}, \alpha_{0})}$$

We only need to estimate the α_i 's

$$\delta_{i}^{x} \approx \mathcal{N}(\mu_{i}, \Sigma_{i})$$

$$\mu_{i} = \alpha_{0} \Sigma_{i} \Phi_{i}^{T} Y_{i}^{x}$$

$$\Sigma_{i} = (\alpha_{0} \Phi_{i}^{T} \Phi_{i} + \mathbf{A})^{-1}$$

$$\mathbf{A} = diag(\alpha_{1}, \alpha_{2}, ..., \alpha_{M})$$

Maximum Likelihood estimation of hyperparameters

• We seek point estimates for the hyperparameters α and α_0 in a maximum likelihood framework.

$$\max_{\boldsymbol{\alpha},\alpha_0} \mathcal{L}(\boldsymbol{\alpha},\alpha_0) = \max_{\boldsymbol{\alpha},\alpha_0} \sum_{i=1}^{L} \log p(\boldsymbol{Y}_i^x \mid \boldsymbol{\alpha},\alpha_0)$$

- Summation over the L images enables information sharing while estimating the hyperparameters.
- Once the hyperparameters are estimated, the posterior for the gradient coefficients δ_i^x is determined based only on its related k-space data Y_i^x due to,

$$\boldsymbol{\mu}_i = \alpha_0 \, \boldsymbol{\Sigma}_i \boldsymbol{\Phi}_i^T \, \boldsymbol{Y}_i^{x}$$

Reconstructing the images from their gradients

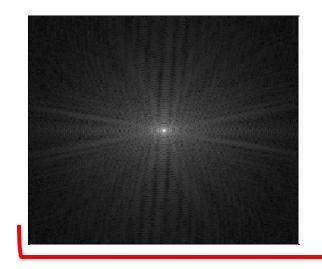
After estimating the vertical and horizontal gradients $\left\{\delta_i^x\right\}_{i=1}^L$ and $\left\{\delta_i^y\right\}_{i=1}^L$, we seek the images $\left\{x_i\right\}_{i=1}^L$ consistent with these and the k-space data $\{y_i\}_{i=1}^L$ in a Least Squares setting,

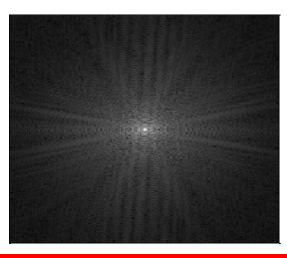
$$\hat{\boldsymbol{x}}_{i} = \underset{\boldsymbol{x}_{i}}{argmin} \left\| \partial_{x} \boldsymbol{x}_{i} - \boldsymbol{\delta}_{i}^{x} \right\|_{2}^{2} + \left\| \partial_{y} \boldsymbol{x}_{i} - \boldsymbol{\delta}_{i}^{y} \right\|_{2}^{2} + \lambda \left\| \mathbf{F}_{\Omega_{i}} \boldsymbol{x}_{i} - \boldsymbol{y}_{i} \right\|_{2}^{2}$$

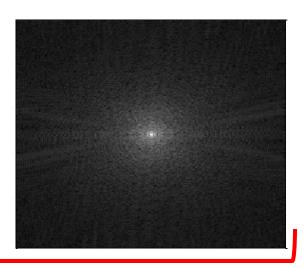
$$for \ i = 1, ..., L$$

where ∂_x and ∂_y are vertical and horizontal gradient operators

SRI24 Atlas

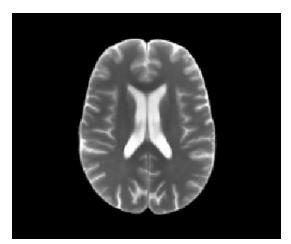


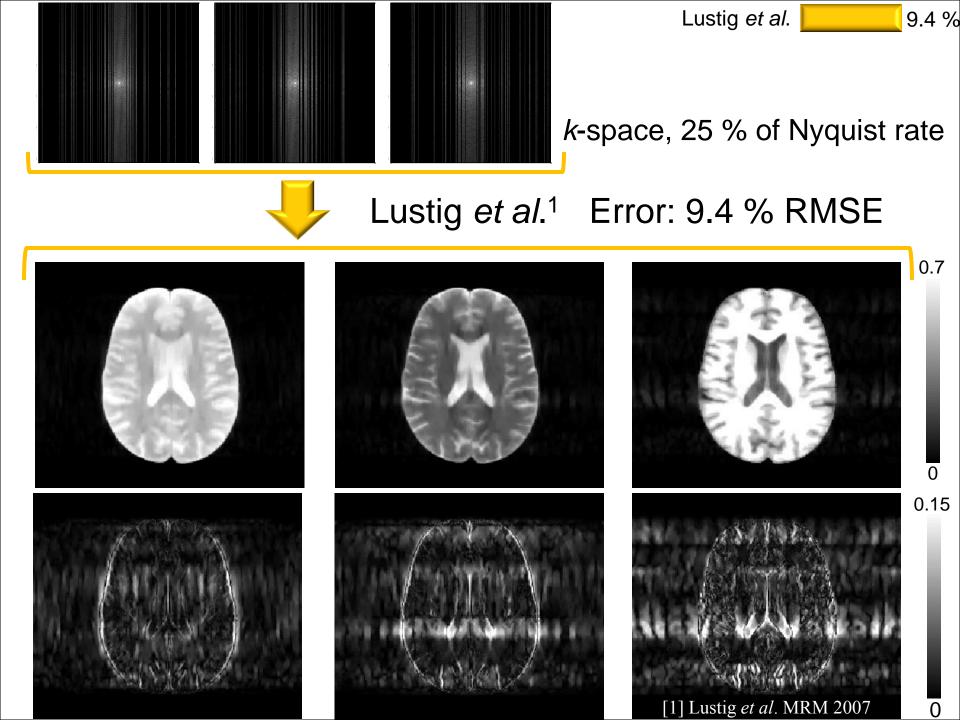


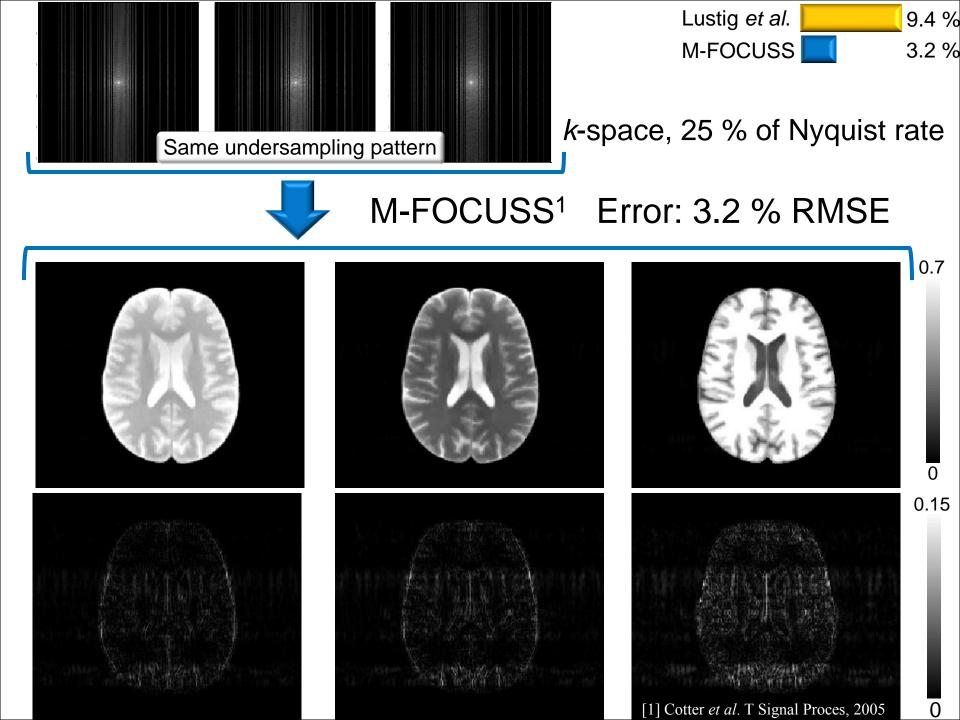


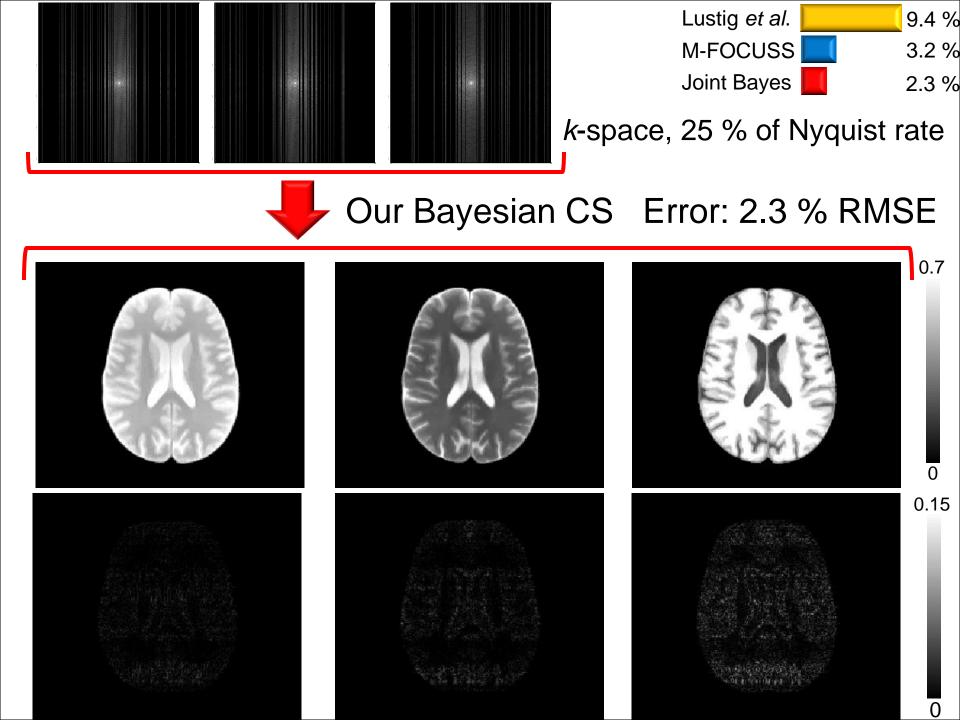
k-space, 100 % of Nyquist rate

Inverse FFT Error: 0 % RMSE



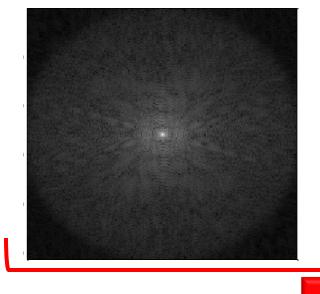


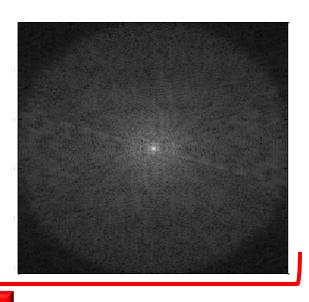




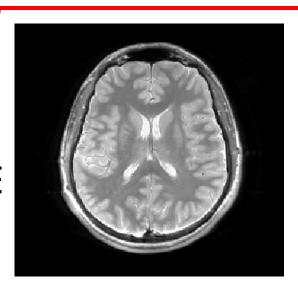
TSE Scans: in vivo acquisition

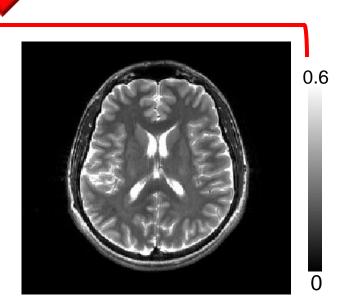
k-space 100 % of Nyquist rate



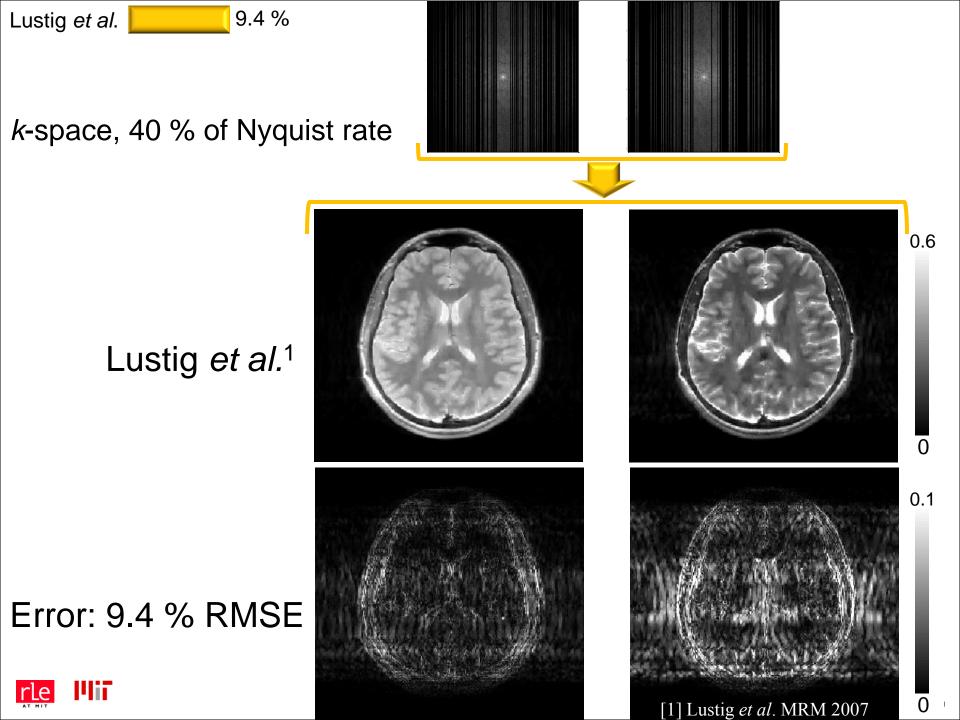


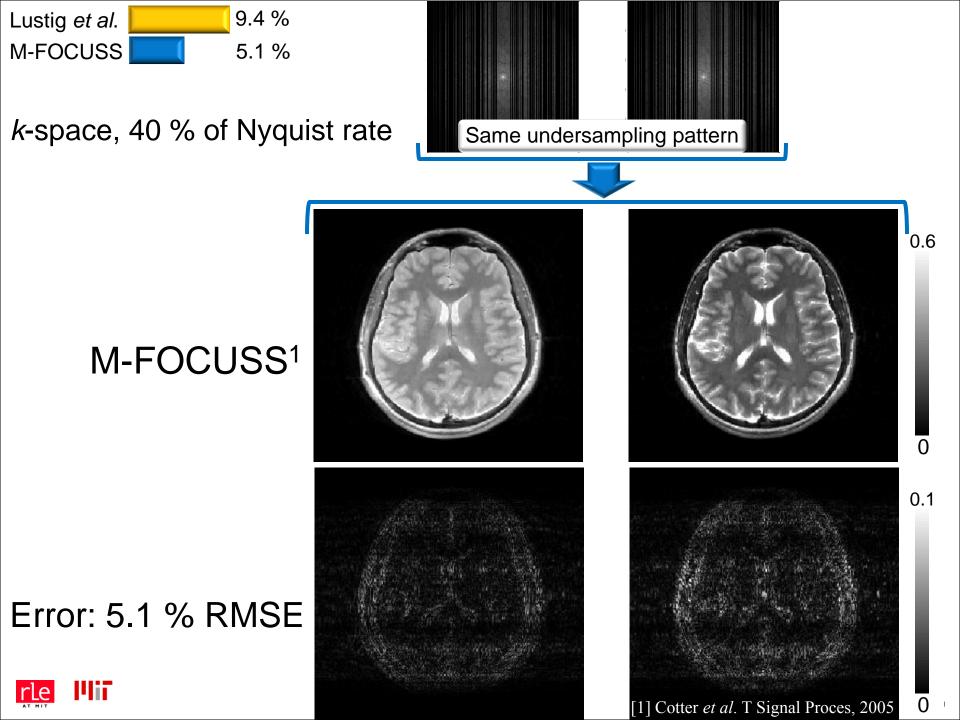
Inverse FFT

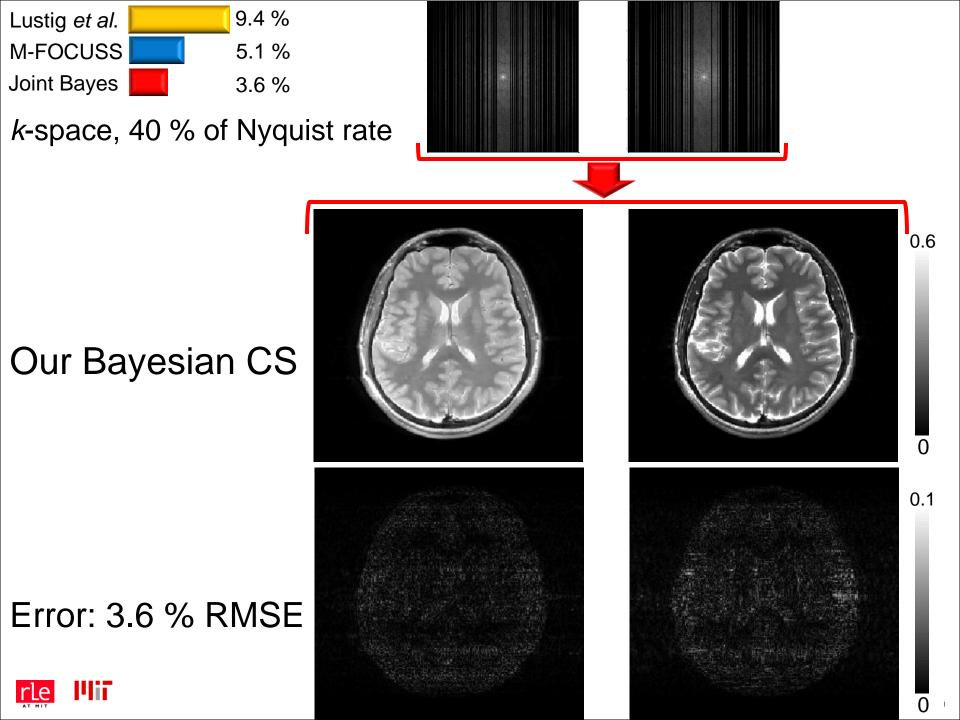




Error: 0 % RMSE







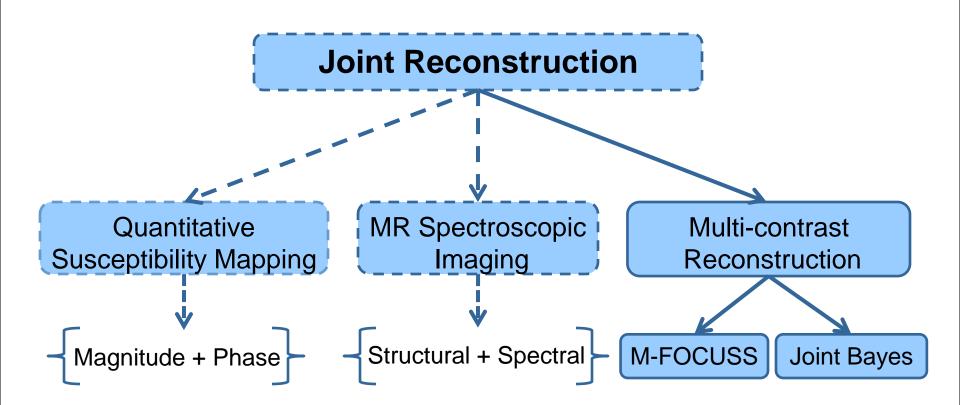
Extensions and Limitations

We assumed the multi-contrast images to be real-valued. Extension to complex-valued images is possible by using a mirror-symmetric sampling pattern and separating real and imaginary parts of the images.

Extensions and Limitations

- We assumed the multi-contrast images to be real-valued. Extension to complex-valued images is possible by using a mirror-symmetric sampling pattern and separating real and imaginary parts of the images.
- Whereas the other two methods take under an hour, the Bayesian method takes about 20 hours with this initial implementation.
- Current work is on increasing the reconstruction speed using
 - Graphics Processing Cards (GPUs) on the hardware front, and
 - Employing variational Bayesian analysis on the algorithm front

Other applications of joint reconstruction



Conclusion

- We presented two joint reconstruction algorithms, M-FOCUSS and joint Bayesian CS, that significantly improved reconstruction quality of multi-contrast images from undersampled data.
- While joint Bayesian method reduced reconstruction errors by up to 4 times relative to a popular CS algorithm¹, current implementation suffers from long reconstruction times.
- M-FOCUSS is a notable candidate that trades off reconstruction quality and processing speed.

