





# Fast Regularized Reconstruction Tools for QSM and DSI

Berkin Bilgic<sup>1,2</sup>, Itthi Chatnuntawech<sup>1</sup>, Kawin Setsompop<sup>2,3</sup>, Audrey P. Fan<sup>1</sup>, Stephen F. Cauley<sup>2</sup>, Lawrence L. Wald<sup>2,4</sup>, E. Adalsteinsson<sup>1,4</sup>

<sup>1</sup>MIT, Cambridge, MA USA

<sup>2</sup>Martinos Center for Biomedical Imaging, Charlestown, MA, USA

<sup>3</sup>Harvard Medical School, Boston, MA, USA

<sup>4</sup>Harvard-MIT Health Sciences and Technology, Cambridge, MA USA



#### **L2-Regularized Reconstruction**

- L2-regularized recon admits closed-form solutions that can be computed efficiently
- Matlab tools that achieve dramatic speed-up relative to iterative algorithms will be presented



#### **L2-Regularized Reconstruction**

- L2-regularized recon admits closed-form solutions that can be computed efficiently
- Matlab tools that achieve dramatic speed-up relative to iterative algorithms will be presented
- Two representative applications are considered,
  - Quantitative Susceptibility Mapping (QSM)
  - □ Diffusion Spectrum Imaging (DSI)



- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility  $\chi$
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]





- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility  $\chi$
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]
- Susceptibility mapping requires the solution of an inverse problem,





- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility  $\chi$
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures [1,2]
- Susceptibility mapping requires the solution of an inverse problem,

$$\mathbf{F}^H \mathbf{D} \mathbf{F} \mathbf{\chi} = \mathbf{\phi}$$
to be estimated measured





- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility  $\chi$
- Susceptibility correlates well with tissue iron concentration, especially in iron rich deep gray matter structures
- Susceptibility mapping requires the solution of an inverse problem,

$${f F}^H \, {f D} \, {f F} \, {m \chi} = {m \phi}$$
  ${f D} = {f D} \, {f D} \, {f D} \, {f D} \, {f C} \, {f D} \, {f D} \, {f C} \, {f D} \, {f C} \,$ 





 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

$$\chi = argmin_{\chi} \|\phi - \mathbf{F}^{H} \mathbf{D} \mathbf{F} \chi\|_{2}^{2} + \lambda \cdot \|\mathbf{G} \chi\|_{2}^{2}$$

$$\text{data consistency} \qquad \ell_{2} \text{ over gradients}$$



 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_{m{x}} \ \mathbf{G}_{m{y}} \ \mathbf{G}_{m{z}} \end{bmatrix}$$

gradient in 3D





 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

Prior: underlying susceptibility map is smooth





 Solution of inverse problem is facilitated by regularization that imposes prior knowledge [1]

Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 The minimizer can be computed efficiently given that the matrix inversion is rapidly performed





Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$



Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 Gradient in image space can be represented in k-space by multiplication with a diagonal matrix E

$$\mathbf{G} = \mathbf{F}^H \mathbf{E} \mathbf{F}$$

where 
$$\mathbf{E}(i, i) = 1 - e^{(-2\pi\sqrt{-1}k(i, i)/N)}$$



Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 Gradient in image space can be represented in k-space by multiplication with a diagonal matrix E

**G** = **F**<sup>H</sup>**E F** where **E**(*i*, *i*) = 
$$1 - e^{(-2\pi\sqrt{-1}k(i,i)/N)}$$

■ **E** is simply the k-space representation of the difference operator  $\delta_i - \delta_{i-1}$ 



Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 Gradient in image space can be represented in k-space by multiplication with a diagonal matrix E

**G** = **F**<sup>H</sup>**E F** where **E**(*i*, *i*) = 
$$1 - e^{(-2\pi\sqrt{-1}k(i,i)/N)}$$

With this formulation, closed-form solution becomes

$$\chi = \mathbf{F}^H \mathbf{D} [\mathbf{D}^2 + \lambda \cdot (\mathbf{E}_x^2 + \mathbf{E}_y^2 + \mathbf{E}_z^2)]^{-1} \mathbf{F} \boldsymbol{\phi}$$
all matrices diagonal





Solution can be evaluated in closed-form

$$\chi = (\mathbf{F}^H \mathbf{D}^2 \mathbf{F} + \lambda \cdot \mathbf{G}^H \mathbf{G})^{-1} \mathbf{F}^H \mathbf{D} \mathbf{F} \boldsymbol{\phi}$$

 Gradient in image space can be represented in k-space by multiplication with a diagonal matrix E

**G** = **F**<sup>H</sup>**E F** where **E**(*i*, *i*) = 
$$1 - e^{(-2\pi\sqrt{-1}k(i,i)/N)}$$

With this formulation, closed-form solution becomes

$$\chi = \mathbf{F}^H \mathbf{D} [\mathbf{D}^2 + \lambda \cdot (\mathbf{E}_{\chi}^2 + \mathbf{E}_{y}^2 + \mathbf{E}_{z}^2)]^{-1} \mathbf{F} \boldsymbol{\phi}$$

Total cost: Two FFTs and multiplication of diagonal matrices





- Numerical Phantom
  - $\square$  Three compartments (gray, white, CSF) with constant  $\chi$
  - □ Phase  $\phi$  computed from true  $\chi$ , and peak-SNR = 100 noise added
  - $lue{}$  Regularization parameter  $\lambda$  chosen to minimize RMSE in reconstructed  $\chi$



- Numerical Phantom
  - $lue{}$  Three compartments (gray, white, CSF) with constant  $\chi$
  - $lue{}$  Phase  $oldsymbol{\phi}$  computed from true  $oldsymbol{\chi}$ , and peak-SNR = 100 noise added
  - lue Regularization parameter  $\lambda$  chosen to minimize RMSE in reconstructed  $\chi$
- In Vivo 3D SPGR
  - □ Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm<sup>3</sup>
  - $\square$  Regularization parameter  $\lambda$  chosen based on L-curve heuristic



- Numerical Phantom
  - $\square$  Three compartments (gray, white, CSF) with constant  $\chi$
  - □ Phase  $\phi$  computed from true  $\chi$ , and peak-SNR = 100 noise added
  - $\square$  Regularization parameter  $\lambda$  chosen to minimize RMSE in reconstructed  $\chi$
- In Vivo 3D SPGR
  - ☐ Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm<sup>3</sup>
  - $\blacksquare$  Regularization parameter  $\lambda$  chosen based on L-curve heuristic
- Comparison of methods
  - i. Iterative solution using Nonlinear Conjugate Gradient [1,2]
  - ii. Proposed closed-form solution





- Numerical Phantom
  - $lue{}$  Three compartments (gray, white, CSF) with constant  $\chi$
  - □ Phase  $\phi$  computed from true  $\chi$ , and peak-SNR = 100 noise added
  - $\square$  Regularization parameter  $\lambda$  chosen to minimize RMSE in reconstructed  $\chi$
- In Vivo 3D SPGR
  - □ Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm<sup>3</sup>
  - $\blacksquare$  Regularization parameter  $\lambda$  chosen based on L-curve heuristic
- Comparison of methods
  - i. Iterative solution  $\rightarrow$  converges to closed-form solution
  - ii. Proposed closed-form solution





# **Numerical Phantom**

Noisy phase  $\phi$ 



error due to noise: 5.9% RMSE





0.01 ppm -0.01 ppm

Closed-form QSM in 3.3 seconds









Closed-form QSM error relative to true  $\chi$ 













# **Numerical Phantom**

Noisy phase  $\phi$ 



error due to noise: 5.9% RMSE







Closed-form QSM in 3.3 seconds









| QSM Method                 | Recon Time  | Error relative to true $\chi$ |
|----------------------------|-------------|-------------------------------|
| Closed-form                | 3.3 seconds | 17.4% RMSE                    |
| Iterative [1,2], 100 iters | 65 minutes  | 18.0% RMSE                    |













Closed-form QSM in 1.3 seconds

















#### In Vivo QSM

Tissue phase  $\phi$ 









Closed-form QSM in 1.3 seconds







| QSM Method                           | Recon Time  |
|--------------------------------------|-------------|
| Closed-form                          | 1.3 seconds |
| Iterative Conj Grad [1,2], 100 iters | 29 minutes  |



#### **Diffusion Spectrum Imaging (DSI)**

- Unlike tensor modeling, DSI offers a complete description of water diffusion
- And reveals complex distributions of fiber orientations
- DSI requires full sampling of q-space (DTI needs ≥7 points)





#### **Diffusion Spectrum Imaging (DSI)**

- Unlike tensor modeling, DSI offers a complete description of water diffusion
- And reveals complex distributions of fiber orientations
- DSI requires full sampling of q-space (DTI needs ≥7 points)



- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing

Undersampled q-space of a single voxel



Probability Density Function (pdf) of a single voxel







Sensing

- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
  - i. Wavelet + Total Variation [1]

$$\min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_{2}^{2} + \alpha \cdot \|\mathbf{\Psi}\boldsymbol{p}\|_{1} + \beta \cdot \mathrm{TV}(\boldsymbol{p})$$
 undersampled pdf q-samples wavelet total variation





- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
  - i. Wavelet + Total Variation [1]

$$min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_{2}^{2} + \alpha \cdot \|\boldsymbol{\Psi}\boldsymbol{p}\|_{1} + \beta \cdot \mathrm{TV}(\boldsymbol{p})$$

- ii. Dictionary-FOCUSS [2]
  - □ Create a dictionary D from a training dataset of pdfs using K-SVD algorithm [3] → tailored for sparse representation
  - ☐ Impose sparsity constraint via FOCUSS algorithm [4] by solving

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x=q$ 





- To reduce scan time, undersample q-space
- Use sparsity prior to recon the pdfs via Compressed Sensing
  - i. Wavelet + Total Variation [1]

$$min_{\boldsymbol{p}} \|\mathbf{F}_{\Omega}\boldsymbol{p} - \boldsymbol{q}\|_{2}^{2} + \alpha \cdot \|\boldsymbol{\Psi}\boldsymbol{p}\|_{1} + \beta \cdot \mathrm{TV}(\boldsymbol{p})$$

- ii. Dictionary-FOCUSS [2]
  - □ Create a dictionary D from a training dataset of pdfs using K-SVD algorithm [3] → tailored for sparse representation
  - ☐ Impose sparsity constraint via FOCUSS algorithm [4] by solving

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x=q$ 



Dictionary transform coefficients

# **Iterative DSI Reconstruction**

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet+TV





#### **Iterative DSI Reconstruction**

- Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet+TV
- Compressed Sensing recon is iterative, with processing times
   > 10 sec / voxel for both methods
- Full-brain recon for 10<sup>5</sup> voxels: ~ 10 DAYS of computation



#### **Iterative DSI Reconstruction**

- Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction using compared to Wavelet+TV
- Compressed Sensing recon is iterative, with processing times
   > 10 sec / voxel for both methods
- Full-brain recon for 10<sup>5</sup> voxels: ~ 10 DAYS of computation
- Two L2-based methods that are 1000-fold faster with image quality similar to Dictionary-FOCUSS are proposed:
  - Tikhonov regularization
  - ii. Principal Component Analysis (PCA)





# **Tikhonov Regularization**

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x=q$ 

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$



# **Tikhonov Regularization**

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x=q$ 

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

• Solution:  $\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$ 





# **Tikhonov Regularization**

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x = q$ 

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

• Solution:  $\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$ 

Singular Value Decomposition:  $\mathbf{F}_{\Omega}\mathbf{D} = \mathbf{U}\boldsymbol{\Sigma}V^{H}$ 





## **Tikhonov Regularization**

Dictionary-FOCUSS iteratively solves

$$min||x||_1$$
 such that  $\mathbf{F}_{\Omega}\mathbf{D}x = q$ 

Instead, consider

$$min \|\mathbf{F}_{\Omega}\mathbf{D}x - q\|_{2}^{2} + \lambda \cdot \|x\|_{2}^{2}$$

Solution:  $\widetilde{\mathbf{x}} = ((\mathbf{F}_{\Omega}\mathbf{D})^H \mathbf{F}_{\Omega}\mathbf{D} + \lambda \mathbf{I})^{-1} (\mathbf{F}_{\Omega}\mathbf{D})^H q$ 

$$\mathbf{F}_{\Omega}\mathbf{D} = \mathbf{U}\mathbf{\Sigma}V^{H}$$
  $\mathbf{\Sigma}^{+}\mathbf{U}^{H}q$   $\mathbf{\Sigma}^{+} = (\mathbf{\Sigma}^{H}\mathbf{\Sigma} + \lambda\mathbf{I})^{-1}\mathbf{\Sigma}^{H}$  compute once





 PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - \boldsymbol{p}_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^H$ 





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - p_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^H$ 

Pick the first T columns of  ${f Q}$  corresponding to largest eigvals:  ${f Q}_T$ 

$$pca = \mathbf{Q}_T^H(p - p_{mean})$$

*T* - dimensional pca coefficients





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Start with a training set of pdfs P
- Subtract the mean, diagonalize the covariance matrix:

$$\mathbf{Z} = \mathbf{P} - \boldsymbol{p}_{mean}$$
 $\mathbf{Z}\mathbf{Z}^H = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^H$ 

Pick the first T columns of  ${f Q}$  corresponding to largest eigvals:  ${f Q}_T$ 

$$pca = \mathbf{Q}_T^H(p - p_{mean})$$

The location of pca in the pdf space,

$$p_T = \mathbf{Q}_T p c a + p_{mean}$$





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$

In PCA coordinates,

$$min_{pca} \|\mathbf{F}_{\Omega}\mathbf{Q}_{T}pca - (\mathbf{q} - \mathbf{F}_{\Omega}p_{mean})\|_{2}^{2}$$





- PCA: approximates data points using a linear combo of them to retain the maximum variance in the dataset
- Least-squares approximation in T dimensions,

$$min \|\mathbf{F}_{\Omega} \boldsymbol{p_T} - \boldsymbol{q}\|_2^2$$

In PCA coordinates,

$$min_{pca} \|\mathbf{F}_{\Omega}\mathbf{Q}_{T}pca - (\mathbf{q} - \mathbf{F}_{\Omega}p_{mean})\|_{2}^{2}$$

Closed-form solution:

$$\widetilde{pca} = \operatorname{pinv}(\mathbf{F}_{\Omega}\mathbf{Q}_{T})(\mathbf{q} - \mathbf{F}_{\Omega}\mathbf{p}_{mean})$$
compute once





# **DSI Acquisition**

- 2.3 mm isotropic with b<sub>max</sub> = 8000 s/mm<sup>2</sup> at 3T
- Connectom gradients and 64-chan head coil [1]
- 515 q-space points collected in 50 min







# **DSI Acquisition**

- 2.3 mm isotropic with  $b_{max} = 8000 \text{ s/mm}^2$  at 3T
- Connectom gradients and 64-chan head coil [1]
- 515 q-space points collected in 50 min
- Two subjects scanned → dictionary training is based on a subject different from the test subject
- Recon experiments at accelerations R = 3, 5 and 9







## **DSI Acquisition**

- 2.3 mm isotropic with  $b_{max} = 8000 \text{ s/mm}^2$  at 3T
- Connectom gradients and 64-chan head coil [1]
- 515 q-space points collected in 50 min
- Two subjects scanned → dictionary training is based on a subject different from the test subject
- Recon experiments at accelerations R = 3, 5 and 9
- Comparison of methods:
  - i. Wavelet + TV [2]
  - ii. Dictionary-FOCUSS [3]

- iii. Tikhonov regularization
- iv. PCA

3. Bilgic et al MRM 2012



<sup>1.</sup> Keil et al MRM 2012

<sup>2.</sup> Menzel et al MRM 2011

# pdf reconstruction error maps



# pdf reconstruction error maps



# pdf reconstruction error maps



#### Conclusion

 For suitable applications, using L2-regularization can lead to fast and high-quality reconstructions



#### Conclusion

- For suitable applications, using L2-regularization can lead to fast and high-quality reconstructions
- Quantitative Susceptibility Mapping
  - □ Closed-form solution:1000-fold speed up obtained relative to state of the art



#### Conclusion

- For suitable applications, using L2-regularization can lead to fast and high-quality reconstructions
- Quantitative Susceptibility Mapping
  - □ Closed-form solution:1000-fold speed up obtained relative to state of the art
- ii. Diffusion Spectrum Imaging
  - Rather than enforcing sparsity, it seems that using a dictionary is the key to good reconstruction
  - 1000-fold speed up obtained relative to Compressed Sensing

# **Software Download:**

http://web.mit.edu/berkin/www/software.html



