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L2-Regularized Reconstruction 

 L2-regularized recon admits closed-form solutions that can 

be computed efficiently 
 

 Matlab tools that achieve dramatic speed-up relative to 

iterative algorithms will be presented 
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 Two representative applications are considered, 
 

Quantitative Susceptibility Mapping (QSM) 
 

Diffusion Spectrum Imaging (DSI) 

 

 

 



 Quantitative Susceptibility Mapping (QSM) aims to quantify 

tissue magnetic susceptibility 𝝌 
 

 Susceptibility correlates well with tissue iron concentration, 

especially in iron rich deep gray matter structures [1,2] 
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Quantitative Susceptibility Mapping (QSM) 
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Regularized QSM 

 Solution of inverse problem is facilitated by regularization that 

imposes prior knowledge [1] 
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[1] de Rochefort et al., Magn Reson Med 2010 
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Regularized QSM 

 Solution of inverse problem is facilitated by regularization that 

imposes prior knowledge [1] 

 

 

 

 

 
 

 Prior: underlying susceptibility map is smooth 
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Regularized QSM 

 Solution of inverse problem is facilitated by regularization that 

imposes prior knowledge [1] 

 

 

 

 

 
 

 Solution can be evaluated in closed-form 

 

 

 The minimizer can be computed efficiently given that the 

matrix inversion is rapidly performed 
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Fast Regularized QSM 

 Solution can be evaluated in closed-form 
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 Gradient in image space can be represented in k-space by 

multiplication with a diagonal matrix 𝐄 

 

 

 𝐄 is simply the k-space representation of the difference 

operator 𝛿𝑖 − 𝛿𝑖−1 
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 Total cost: Two FFTs and multiplication of diagonal matrices 
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Regularized QSM Results 

 Numerical Phantom 

Three compartments (gray, white, CSF) with constant 𝝌 

Phase 𝝓 computed from true 𝝌, and peak-SNR = 100 noise 

added 

Regularization parameter 𝜆 chosen to minimize RMSE in 

reconstructed 𝝌 
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 In Vivo 3D SPGR 

Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm3 

Regularization parameter 𝜆 chosen based on L-curve heuristic 

 

 Comparison of methods 

i. Iterative solution using Nonlinear Conjugate Gradient [1,2]  

ii. Proposed closed-form solution 
[1] de Rochefort et al., Magn Reson Med 2010 

[2] Bilgic et al., Neuroimage 2012 



Regularized QSM Results 

 Numerical Phantom 

Three compartments (gray, white, CSF) with constant 𝝌 

Phase 𝝓 computed from true 𝝌, and peak-SNR = 100 noise 

added 

Regularization parameter 𝜆 chosen to minimize RMSE in 

reconstructed 𝝌 
 

 In Vivo 3D SPGR 

Healthy subject at 1.5T with resolution 0.94×0.94×2.5mm3 

Regularization parameter 𝜆 chosen based on L-curve heuristic 

 

 Comparison of methods 

i. Iterative solution → converges to closed-form solution 

ii. Proposed closed-form solution 
[1] de Rochefort et al., Magn Reson Med 2010 

[2] Bilgic et al., Neuroimage 2012 



Numerical Phantom 

Noisy phase 𝝓 

Closed-form QSM error relative to true 𝝌  

Closed-form QSM in 3.3 seconds 

 error due to noise: 5.9% RMSE  
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Numerical Phantom 

Noisy phase 𝝓 

Closed-form QSM in 3.3 seconds 

 error due to noise: 5.9% RMSE  
0.01 ppm 

−0.01 ppm 

0.03 ppm 

−0.03 ppm 

QSM Method Recon Time Error relative to true 𝝌 

Closed-form  3.3 seconds 17.4% RMSE 

Iterative [1,2], 100 iters 65 minutes 18.0% RMSE 

[1] de Rochefort et al., MRM 2010 

[2] Bilgic et al., Neuroimage 2012 



In Vivo QSM 

Tissue phase 𝝓 

 

Closed-form QSM in 1.3 seconds 

Closed-form and Iterative QSM difference 

MAGNIFIED 250 TIMES 

0.13 ppm 

−0.13 ppm 

0.04 ppm 

−0.04 ppm 

5.2∙10−4 ppm 

−5.2∙10 −4 ppm 



In Vivo QSM 

Tissue phase 𝝓 

 

Closed-form QSM in 1.3 seconds 
0.13 ppm 

−0.13 ppm 

0.04 ppm 

−0.04 ppm 

QSM Method Recon Time 

Closed-form  1.3 seconds 

Iterative Conj Grad [1,2], 100 iters 29 minutes 

[1] de Rochefort et al., MRM 2010 

[2] Bilgic et al., Neuroimage 2012 



Diffusion Spectrum Imaging (DSI) 

 Unlike tensor modeling, DSI offers a complete description of 

water diffusion 
 

 And reveals complex distributions of fiber orientations 
 

 DSI requires full sampling of q-space (DTI needs ≥7 points) 
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Diffusion Spectrum Imaging (DSI) 

Q-space of a single voxel 

515 directions 

Probability Density Function (pdf) 

of a single voxel 

DFT 

Sampling full q-space takes ~1 hour 

 Unlike tensor modeling, DSI offers a complete description of 

water diffusion 
 

 And reveals complex distributions of fiber orientations 
 

 DSI requires full sampling of q-space (DTI needs ≥7 points) 
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Undersampled DSI 

 To reduce scan time, undersample q-space  
 

 Use sparsity prior to recon the pdfs via Compressed Sensing 

Undersampled q-space 

of a single voxel 

Compressed 

 
Sensing 

Probability Density Function (pdf) 

of a single voxel 
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Undersampled DSI 

 To reduce scan time, undersample q-space  
 

 Use sparsity prior to recon the pdfs via Compressed Sensing 
 

i. Wavelet + Total Variation [1] 
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2
+ 𝛼 ∙ 𝚿𝒑 1 + 𝛽 ∙ TV(𝒑) 

1. Menzel et al MRM 2011 



Undersampled DSI 

 To reduce scan time, undersample q-space  
 

 Use sparsity prior to recon the pdfs via Compressed Sensing 
 

i. Wavelet + Total Variation [1] 

 

 

 

ii. Dictionary-FOCUSS [2] 

3. Aharon et al IEEE TSP 2006 

4. Gorodnitsky et al IEEE TSP 1997 
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 Create a dictionary 𝐃 from a training dataset of pdfs using 

K-SVD algorithm [3] → tailored for sparse representation 
 

1. Menzel et al MRM 2011 

2. Bilgic et al MRM 2012 

 

 Impose sparsity constraint via FOCUSS algorithm [4] by solving 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 



Undersampled DSI 

 To reduce scan time, undersample q-space  
 

 Use sparsity prior to recon the pdfs via Compressed Sensing 
 

i. Wavelet + Total Variation [1] 

 

 

 

ii. Dictionary-FOCUSS [2] 

𝑚𝑖𝑛𝒑 𝐅Ω𝒑 − 𝒒 2
2
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 Create a dictionary 𝐃 from a training dataset of pdfs using 

K-SVD algorithm [3] → tailored for sparse representation 
  

 Impose sparsity constraint via FOCUSS algorithm [4] by solving 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

Dictionary transform 

coefficients 



Iterative DSI Reconstruction 

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction 

using compared to Wavelet+TV  
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Iterative DSI Reconstruction 

 Dictionary-FOCUSS [1] yields up to 2-times RMSE reduction 

using compared to Wavelet+TV  
 

 Compressed Sensing recon is iterative, with processing times 

> 10 sec / voxel  for both methods 
 

 Full-brain recon for 105 voxels: ~ 10 DAYS of computation 

 

 Two L2-based methods that are 1000-fold faster with image 

quality similar to Dictionary-FOCUSS are proposed: 
 

i. Tikhonov regularization 
 

ii. Principal Component Analysis (PCA) 
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Tikhonov Regularization 

 Dictionary-FOCUSS iteratively solves 

 

 

 Instead, consider 
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Tikhonov Regularization 

 Dictionary-FOCUSS iteratively solves 
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 Solution:  

 

 

 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2
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𝟐
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Singular Value Decomposition: 𝐅Ω𝐃 = 𝐔𝚺𝑽
𝐻 
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Tikhonov Regularization 

 Dictionary-FOCUSS iteratively solves 
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 Solution:  

 

 

 

Singular Value Decomposition: 𝐅Ω𝐃 = 𝐔𝚺𝑽
𝐻 

𝒙 = 𝐕𝚺+𝐔𝐻𝑞 𝚺+ = (𝚺𝐻𝚺 + 𝜆𝐈)−1𝚺𝐻 

compute once 

𝑚𝑖𝑛 𝒙 1   such that   𝐅Ω𝐃𝒙 = 𝒒 

𝑚𝑖𝑛 𝐅Ω𝐃𝒙 − 𝒒 2
2
+ 𝜆 ∙ 𝒙 𝟐

𝟐
 

𝒙 = ((𝐅Ω𝐃)
𝐻𝐅Ω𝐃 + 𝜆𝐈)

−1(𝐅Ω𝐃)
𝐻𝑞 
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 Pick the first 𝑇 columns of 𝐐 corresponding to largest eigvals: 𝐐𝑇 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 

𝒑𝒄𝒂 = 𝐐𝑇
𝐻(𝒑 − 𝒑𝑚𝑒𝑎𝑛) 

𝑇 - dimensional 

pca coefficients 
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Start with a training set of pdfs 𝐏 

 Subtract the mean, diagonalize the covariance matrix: 

 

 

 

 Pick the first 𝑇 columns of 𝐐 corresponding to largest eigvals: 𝐐𝑇 

 

 

 The location of 𝒑𝒄𝒂 in the pdf space, 

 

 

𝐙 = 𝐏 − 𝒑𝑚𝑒𝑎𝑛 

𝐙𝐙𝐻 = 𝐐𝚲𝐐𝐻 

𝒑𝒄𝒂 = 𝐐𝑇
𝐻(𝒑 − 𝒑𝑚𝑒𝑎𝑛) 

𝒑𝑻 = 𝐐𝑇𝒑𝒄𝒂 + 𝒑𝑚𝑒𝑎𝑛 
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 

 

 

 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 In PCA coordinates, 

 

 

 

𝑚𝑖𝑛𝒑𝒄𝒂 𝐅Ω𝐐𝑇𝒑𝒄𝒂 − (𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 2
2 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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PCA Reconstruction 

 PCA: approximates data points using a linear combo of them 

to retain the maximum variance in the dataset 
 

 Least-squares approximation in 𝑇 - dimensions, 

 

 

 

 In PCA coordinates, 

 

 

 

 Closed-form solution: 

𝑚𝑖𝑛𝒑𝒄𝒂 𝐅Ω𝐐𝑇𝒑𝒄𝒂 − (𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 2
2 

𝒑𝒄𝒂 = pinv(𝐅Ω𝐐𝑇)(𝒒 − 𝐅Ω𝒑𝑚𝑒𝑎𝑛) 

compute once 

𝑚𝑖𝑛 𝐅Ω𝒑𝑻 − 𝒒 2
2
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DSI Acquisition 

 2.3 mm isotropic with bmax = 8000 s/mm2   at  3T 
 

 Connectom gradients and 64-chan head coil [1] 
 

 515 q-space points collected in 50 min 
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DSI Acquisition 

 2.3 mm isotropic with bmax = 8000 s/mm2   at  3T 
 

 Connectom gradients and 64-chan head coil [1] 
 

 515 q-space points collected in 50 min 
 

 Two subjects scanned → dictionary training is based on a 

subject different from the test subject 
 

 Recon experiments at accelerations R = 3, 5 and 9 
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DSI Acquisition 

 2.3 mm isotropic with bmax = 8000 s/mm2   at  3T 
 

 Connectom gradients and 64-chan head coil [1] 
 

 515 q-space points collected in 50 min 
 

 Two subjects scanned → dictionary training is based on a 

subject different from the test subject 
 

 Recon experiments at accelerations R = 3, 5 and 9 

 

 Comparison of methods: 

i. Wavelet + TV [2] 

ii. Dictionary-FOCUSS [3]   
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1. Keil et al MRM 2012 

2. Menzel et al MRM 2011 

3. Bilgic et al MRM 2012 

iii. Tikhonov regularization 

iv. PCA 
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Conclusion 

 For suitable applications, using L2-regularization can lead to 

fast and high-quality reconstructions 
 

i. Quantitative Susceptibility Mapping 

Closed-form solution:1000-fold speed up obtained relative to 

state of the art 
 

ii. Diffusion Spectrum Imaging 

 Rather than enforcing sparsity, it seems that using a dictionary 

is the key to good reconstruction 
 

 1000-fold speed up obtained relative to Compressed Sensing 

 

Software Download:  
 

http://web.mit.edu/berkin/www/software.html 

http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html
http://web.mit.edu/berkin/www/software.html

