

Quantitative Susceptibility Mapping with Magnitude Prior

Berkin Bilgic¹, Audrey P. Fan¹, Elfar Adalsteinsson^{1,2}

¹EECS, MIT, Cambridge, MA, United States ²Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

F: Discrete Fourier Transform matrix

D: susceptibility kernel in *k*-space

$$\delta = \frac{\varphi}{\gamma \cdot TE \cdot B_0}$$
: normalized field map

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem,

- Quantitative Susceptibility Mapping (QSM) aims to quantify tissue magnetic susceptibility with applications such as,
 - Tissue contrast enhancement¹
 - Estimation of venous blood oxygenation²
 - Quantification of tissue iron concentration³
- Estimation of the susceptibility map χ from the unwrapped phase φ involves solving an inverse problem, $\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$
- The inversion is made difficult by zeros on a conical surface in susceptibility kernel D

$$\mathbf{D} = \left(\frac{1}{3} - \frac{\mathbf{k}_z^2}{\mathbf{k}^2}\right)$$

Solving for χ by convolving with the inverse of **D** is not possible, as it diverges along the magic angle

 $\mathbf{F}\mathbf{D}^{-1}\mathbf{F}\delta = \chi$

• Solving for χ by convolving with the inverse of ${\bf D}$ is not possible, as it diverges along the magic angle

- Solving for χ by convolving with the inverse of **D** is not possible, as it diverges along the magic angle
- Spatial details that have frequency components at the magic angle lose conspicuity in the field map δ

- Solving for χ by convolving with the inverse of **D** is not possible, as it diverges along the magic angle
- Spatial details that have frequency components at the magic angle lose conspicuity in the field map δ
- We propose to use regularization to facilitate the inversion

- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil

magnitudes of the coil sensitivities

- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities

phase of the coil sensitivities

- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities
- Phase of the normalized images → phase of the coil sensitivities

13 www.rle.mit.edu

- 3D GRE acquisition with phased array coils and body coil
- Normalize each channel image with the body coil
- Fit 2nd order polynomials to the magnitude of the normalized images → magnitude of the coil sensitivities
- Phase of the normalized images → phase of the coil sensitivities
- Final image is obtained by least-squares coil combination

Brain Mask Extraction & Phase Unwrapping

Brain mask was generated with the FSL Brain Extraction Tool¹

Brain Mask Extraction & Phase Unwrapping

Brain mask was generated with the FSL Brain Extraction Tool¹

Phase unwrapping was done with the FSL PRELUDE²

-30 rad

Background Phase Removal

 The background phase was estimated with the Effective Dipole Fitting method¹

Background Phase Removal

- The background phase was estimated with the Effective Dipole Fitting method¹
- Subtracting the estimated background from the initial field map gives the tissue field map

• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

Multiplying both sides with V_xF

$$\mathbf{V}_{r}\mathbf{F}\delta = \mathbf{V}_{r}\mathbf{D}\mathbf{F}\chi$$

where \mathbf{V}_x is a diagonal matrix with $\mathbf{V}_x(\omega,\omega) = \left(1 - e^{-2\pi j\omega/n}\right)$

• The tissue field map δ is related to the susceptibility distribution χ via

$$\delta = \mathbf{F}^{-1}\mathbf{D}\mathbf{F}\chi$$

Multiplying both sides with V_xF

$$\mathbf{V}_{x}\mathbf{F}\boldsymbol{\delta} = \mathbf{V}_{x}\mathbf{D}\mathbf{F}\boldsymbol{\chi}$$

where V_x is a diagonal matrix with $V_x(\omega,\omega) = (1 - e^{-2\pi j\omega/n})$

This corresponds to taking the spatial gradient along the x axis

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

• The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

We solve for ∂_x χ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x} \chi_{k-1}\right|^{1/2}\right)$$

The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

We solve for ∂_x χ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x} \chi_{k-1}\right|^{1/2}\right)$$

$$\mathbf{q}_{k} = \operatorname{argmin} \left\|\mathbf{F}\left(\partial_{x} \delta\right) - \mathbf{DFW}_{k} \mathbf{q}\right\|_{2}^{2} + \lambda \left\|\mathbf{q}\right\|_{2}^{2}$$

• The gradient of the tissue field map δ is related to the gradient of the susceptibility distribution χ via

$$\mathbf{F}(\partial_x \delta) = \mathbf{DF}(\partial_x \chi)$$

We solve for ∂_xχ with the FOCUSS algorithm¹

at k^{th} iteration,

$$\mathbf{W}_{k} = \operatorname{diag}\left(\left|\partial_{x}\chi_{k-1}\right|^{1/2}\right)$$

$$\mathbf{q}_{k} = \underset{\mathbf{q}}{\operatorname{argmin}} \left\|\mathbf{F}\left(\partial_{x}\delta\right) - \mathbf{DFW}_{k}\mathbf{q}\right\|_{2}^{2} + \lambda \left\|\mathbf{q}\right\|_{2}^{2}$$

$$\partial_{x}\chi_{k} = \mathbf{W}_{k}\mathbf{q}_{k}$$

 We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- To impose this prior, we modify the update equations as,

$$\mathbf{W}_{prior} = \operatorname{diag}(\left|\partial_{x} \boldsymbol{m}\right|^{1/2}), \quad \boldsymbol{m}: \text{ magnitude image}$$
at k^{th} iteration,
$$\mathbf{W}_{k} = \operatorname{diag}(\left|\partial_{x} \chi_{k-1}\right|^{1/2})$$

$$\boldsymbol{q}_{k} = \underset{\boldsymbol{q}}{\operatorname{argmin}} \|\mathbf{F}(\partial_{x} \delta) - \mathbf{DFW}_{prior} \mathbf{W}_{k} \boldsymbol{q}\|_{2}^{2} + \lambda \|\boldsymbol{q}\|_{2}^{2}$$

$$\partial_{x} \chi_{k} = \mathbf{W}_{prior} \mathbf{W}_{k} \boldsymbol{q}_{k}$$

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- Expressed in terms of $\partial_{x}\chi$,

$$\mathbf{W}_{prior} = \operatorname{diag}(|\partial_x m|^{1/2}), \quad m$$
: magnitude image

$$\partial_{x} \chi_{k} = \underset{\partial}{\operatorname{argmin}} \left\| \mathbf{F} (\partial_{x} \delta) - \mathbf{D} \mathbf{F} (\partial_{x} \chi) \right\|_{2}^{2} + \lambda \left\| \mathbf{W}_{prior}^{-1} \mathbf{W}_{k}^{-1} (\partial_{x} \chi) \right\|_{2}^{2}$$

- We expect the susceptibility distribution to share similar spatial gradients as the magnitude image.
- Expressed in terms of $\partial_{\mathbf{r}} \chi$,

$$\mathbf{W}_{prior} = \operatorname{diag}(|\partial_x m|^{1/2}), \quad m: \text{ magnitude image}$$

$$\partial_{x} \chi_{k} = \underset{\partial_{x} \chi}{\operatorname{argmin}} \left\| \mathbf{F} (\partial_{x} \delta) - \mathbf{D} \mathbf{F} (\partial_{x} \chi) \right\|_{2}^{2} + \lambda \left\| \mathbf{W}_{prior}^{-1} \mathbf{W}_{k}^{-1} (\partial_{x} \chi) \right\|_{2}^{2}$$

if $\partial_x m_i$ is small, $\mathbf{W}_{prior}^{-1}(i,i)$ will be large and penalize $\partial_x \chi_i$ more

 After estimating the spatial gradients along x, y and z axes, the susceptibility distribution that matches these is found by solving a least squares problem,

$$\chi = \underset{\theta}{\operatorname{argmin}} \sum_{r=x,y,z} \| \partial_r \theta - \partial_r \chi \|_2^2 + \beta \cdot \| \delta - \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \theta \|_2^2$$

 After estimating the spatial gradients along x, y and z axes, the susceptibility distribution that matches these is found by solving a least squares problem,

$$\chi = \underset{\theta}{\operatorname{argmin}} \sum_{r=x,y,z} \left\| \partial_r \theta - \partial_r \chi \right\|_2^2 + \beta \cdot \left\| \delta - \mathbf{F}^{-1} \mathbf{D} \mathbf{F} \theta \right\|_2^2$$
matching gradients data consistency

QSM result: FOCUSS-QSM with magnitude prior

• Starting from the noisy field map δ , FOCUSS-QSM with magnitude prior yielded a susceptibility map with 1.3 % RMSE relative to true χ .

QSM result: FOCUSS-QSM with magnitude prior

 The reconstructed susceptibility map managed to recover the vessel at the magic angle, which was virtually lost in the field map.

In vivo QSM result: FOCUSS-QSM with magnitude prior

- 3D GRE acquisition at 3T
- 32 channel receive array
- 0.94x0.94x2.5 mm³ resolution
- ❖ TE: 20 ms

In vivo QSM result: FOCUSS-QSM with magnitude prior

Structure	Δχ [ppm]
Globus Pallidus	12.3
Substantia Nigra	10.5
Dentate	6.2
Red Nucleus	4.5
Putamen	3.2
Caudate	2.3

x 0.01 ppm, relative to χ_{CSF}

In vivo QSM result: FOCUSS-QSM with magnitude prior

In vivo QSM result: FOCUSS-QSM with a prior

Vessels are less apparent without the magnitude prior

Corresponding Tissue Field Map:

0.1 ppm -0.1 ppm I

In vivo QSM result with magnitude prior in k-space:

In vivo QSM result with magnitude prior in k-space:

Potential drawbacks of FOCUSS-QSM

- Computation time:
 - ❖ Dipole fitting for background removal ≈ 2 hours
 - FOCUSS-QSM ≈ 1 hours
 - ❖ Total processing time ≈ 3 hours for data of size [256x256x64]

Potential drawbacks of FOCUSS-QSM

Computation time:

- ❖ Dipole fitting for background removal ≈ 2 hours
- FOCUSS-QSM ≈ 1 hours
- ❖ Total processing time ≈ 3 hours for data of size [256x256x64]

Solution:

Both algorithms solve Least Squares problems, Graphics Processing Card (GPU) implementation will greatly enhance the performance

Conclusion

- Starting with a multi-coil 3D GRE acquisition, we outlined coil combination and background phase elimination methods that yielded the tissue field map.
- We introduced a Quantitative Susceptibility Mapping algorithm that makes use of the magnitude image to facilitate the kernel inversion.

