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TARGET AUDIENCE: Physicians and scientists interested in Quantitative Susceptibility Mapping (QSM) and phase imaging.  
PURPOSE: QSM estimates the underlying magnetic susceptibility of tissues that give rise to changes in the magnetic field, and has applications in 
tissue iron quantification [1] and vessel oxygenation estimation [2]. ℓଵ- and ℓଶ-regularization have been proposed [3,4] to help solve the ill-conditioned 
dipole inversion in QSM. A high-resolution whole brain QSM reconstruction can take up to 20 min on a workstation, which poses a limit on QSM 
usability in clinical and research settings. Recently, the use of Split-Bregman (SB) formulation with ℓଵ-regularization [5] and an efficient closed-form 
solution to the ℓଶ-regularized problem [6] have been proposed to significantly decrease the computation cost of these problems. Herein, we introduce 
an improved SB ℓଵ-regularized dipole inversion algorithm that offers 20× faster reconstruction relative to the standard nonlinear conjugate gradient 
(NCG) solver. This fast reconstruction renders estimation of regularization parameters with the L-curve heuristic feasible. Additionally, we extend SB ℓଵ -regularization to admit magnitude-weighting that prevents smoothing across edges identified on the magnitude signal, and solve this more 
complicated problem 5× faster than the NCG approach. Further, we extend the previously proposed closed-form ℓଶ-based inversion [6] to admit 
magnitude-weighting, and demonstrate 15× acceleration relative to NCG by employing a preconditioner that leads to faster convergence. Utility of the 
proposed methods is demonstrated in high-resolution (0.6 mm isotropic) 3D GRE data at 3T, as well as multi-echo Simultaneous Multi-Slice (SMS) 
EPI time-series at 7T, wherein processing of such large datasets would otherwise be prohibitive with conventional NCG. 
METHODS: Tissue susceptibility ࣑ relates to the measured field map ࣘ via ۲۴࣑ = ۴ࣘ, where ۴ is Fourier transform operator and ۲ is the dipole kernel. र-regularized QSM: aims to solve ݉݅݊ԡ۴ିଵ۲۴࣑ − ࣘԡଶଶ + ԡଶଶ࣑۵܅ԡߚ  where ۵  is the gradient operator and ܅  is a binary mask 
derived from the gradient of the magnitude image. The optimizer is given by the solution of (۴ିଵ۲ଶ۴ + ࣑(ଶ۵܅۵்ߚ = ۴ିଵ۲۴ࣘ. Without magnitude weighting (܅ = ۷), it can be computed 
in closed-form [3] as ࣑ = ۴ିଵ(۲ଶ + ۳ଶ)ିଵ۲۴ࣘߚ , by expressing the gradient as ۵ = ۴ିଵ۳۴ 
where ۳ is a diagonal matrix. Since the inversion involves only diagonal matrices, it requires 
only two FFTs. With magnitude weighting, the linear system is no longer diagonal. We propose 
to use the closed-form solution as preconditioner and iteratively solve the modified system (۲ଶ + ۳ଶ)ିଵߚ ∙ ሼ(۲ଶ + (ۯߚ ∙ ࣑۴ − ۲۴ࣘሽ =  where ۯ = ۳ு۴܅ଶ۴ିଵ۳. As the weight matrix ܅ 
contains only the strongest edges, it is equal to identity ۷ except for ~5% of its entries [3]. This 
makes the approximation (۲ଶ + ۳ଶ)ିଵߚ ≈ (۲ଶ + ଵି(ۯߚ  valid, and renders the preconditioner 
useful. र-regularized QSM: we extend the SB formulation [7] to QSM by solving ݉݅݊ 1/2ԡ۴ିଵ۲۴࣑ − ࣘԡଶଶ + ԡଵ࢟ԡߣ + ܡ2ԡ/ߤ − ԡଶଶ࣑۵܅ . At iteration ݐ ࣑ ,  and ܡ  are updated due to (i) (۲ଶ + ௧ାଵ࣑۴(ۯߤ = ۲۴ࣘ + ௧ାଵ࢟ ௧ and (ii)்࢟܅۳ு۴ߤ = |௧ାଵ࣑۵܅|)ݔܽ݉ − ,ߤ/ߣ 0) ∙  .(௧ାଵ࣑۵܅)݊݃݅ݏ
Without magnitude weighting, (i) can be rapidly solved in closed-form, while (ii) is a simple 
soft-thresholding step. With the inclusion of ܅, the preconditioner (۲ଶ +  ۳ଶ) is employed forߤ
fast iterative solution via linear conjugate gradient. Using the susceptibility estimate from the 
previous iteration ࣑௧ as initial guess further improves convergence. Data Acquisition: 3D GRE 
at 0.6 mm iso res was acquired on a volunteer at 3T (TR/TE=26/8.1ms, Rinplane=2, Tacq=16min), 
and a multi-echo SMS EPI dataset at 2 mm iso res was collected on a healthy volunteer at 7T 
(TR/TE1/TE2/TE3/TE4=2040/15/35/54/74ms, Rinplane×MB=3x3). Phase data were processed with 
Laplacian unwrapping [8] and Sharp filtering [9]. ߤ ,ߚ and ߣ values were chosen using L-curve.  
RESULTS: 3D GRE: Reconstruction with closed-form ℓଶ -regularization [6] took 0.9s, while the proposed ℓଶ -based inversion with magnitude 
weighting was completed in 88s (Fig1, top). Proposed ℓଵ-regularized QSM was finished in 60s and 275s without and with magnitude weighting (Fig1, 
bottom). Conventional NCG requires 1350s to reach the same convergence criterion of less than 1% change in the ࣑ update (not shown). SMS EPI: ℓଶ- 
and ℓଵ-based dipole inversion with magnitude weighting are completed in 0.9s and 4s per frame in the time-series (Fig2 shows results for TE1 data). 
DISCUSSION: The proposed dipole inversion algorithms dramatically reduce the processing time of ℓଵ- and ℓଶ-regularized QSM, while admitting 
prior information derived from the magnitude signal for edge-aware regularization. Such fast processing is made possible by efficient use of the closed-
form ℓଶ-based solver as preconditioner and the variable splitting method that decomposes ℓଵ-penalty into a least-squares problem followed by a soft-
thresholding step. While yielding up to 20× speed-up relative to conventional optimization methods, the proposed algorithms are further combined 
with fast phase unwrapping and background removal techniques to yield a rapid pipeline that might facilitate clinical application of QSM. 
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