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Lipid Suppression in CSI with Spatial Priors and Highly
Undersampled Peripheral K-Space

Berkin Bilgic,1* Borjan Gagoski,2 Trina Kok,1 and Elfar Adalsteinsson1,3

Mapping 1H brain metabolites using chemical shift imaging is
hampered by the presence of subcutaneous lipid signals,
which contaminate the metabolites by ringing due to limited
spatial resolution. Even though chemical shift imaging at spa-
tial resolution high enough to mitigate the lipid artifacts is
infeasible due to signal-to-noise constraints on the metabo-
lites, the lipid signals have orders of magnitude of higher con-
centration, which enables the collection of high-resolution lipid
maps with adequate signal-to-noise. The previously proposed
dual-density approach exploits this high signal-to-noise prop-
erty of the lipid layer to suppress truncation artifacts using
high-resolution lipid maps. Another recent approach for lipid
suppression makes use of the fact that metabolite and lipid
spectra are approximately orthogonal, and seeks sparse
metabolite spectra when projected onto lipid-basis functions.
This work combines and extends the dual-density approach
and the lipid-basis penalty, while estimating the high-resolution
lipid image from 2-average k-space data to incur minimal
increase on the scan time. Further, we exploit the spectral-spa-
tial sparsity of the lipid ring and propose to estimate it from
substantially undersampled (acceleration R 5 10 in the periph-
eral k-space) 2-average in vivo data using compressed sensing
and still obtain improved lipid suppression relative to using
dual-density or lipid-basis penalty alone. Magn Reson Med
000:000–000, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The spatial resolution in proton spectroscopic imaging is
constrained by the low signal-to-noise (SNR) of the metab-
olite signals and the total scan time required for encoding
in both chemical shift and space. Poor spatial resolution
with impulse response functions of either square or circu-
lar k-space sampling leads to significant spatial ringing
artifacts, which in the case of large and undesirable signals
from subcutaneous lipid layer in spectroscopic imaging of
the brain can significantly contaminate the desired metab-

olite spectra throughout the brain. Considering that the
lipid signals are several orders of magnitude stronger than
the biochemical spectra, the diagnostic quality of spectro-
scopic data is severely limited if the truncation artifacts
are not mitigated by some means of lipid suppression.

Standard means of lipid suppression include outer-vol-
ume suppression (OVS) (1–3), inversion recovery (4–6),
and selective brain-only excitation (7,8). Although these
methods provide effective artifact reduction, their inevita-
ble tradeoff and common drawback is the associated loss
of brain metabolite signals, either through signal loss in
peripheral brain regions (e.g., OVS and point resolved
spectroscopy (PRESS)) or throughout the brain inversion
recovery (IR). Another proposal for lipid artifact reduc-
tion is to acquire chemical shift imaging (CSI) data with a
variable sampling density pattern and apply SNR-optimal
apodization in the k-space to reduce the side lobes of the
point spread function (9). Optimal filters specifically
designed to reduce the lipid contamination inside the
brain yield further improvement over the variable-density
approach (10). An alternative approach acquires high-re-
solution lipid maps in addition to highly oversampled,
low-resolution CSI data. This dual-density method (11–
13) exploits the fact that the lipid signals have high SNR,
so a high-resolution lipid estimate can be obtained with
adequate SNR for subsequent processing, which includes
spatial lipid masking and combination with low-resolu-
tion CSI data. Another research direction involves k-space
extrapolation with prior knowledge of spatial boundaries
of the brain (14,15). In particular, effective lipid suppres-
sion is demonstrated at a relatively short echo time of 50
ms in Ref. 15. A yet different method of lipid suppression
was recently proposed (16) by relying on the approxima-
tion that the metabolite and lipid spectra are orthogonal
and seeks sparse metabolite spectra when projected onto
lipid-basis functions selected from the lipid layer.

Our work combines and extends the dual-density
approach and the iterative lipid-basis reconstruction. We
propose and demonstrate a method to estimate the high-
resolution lipid image from 2-average k-space data in
fast spiral CSI and combine this with the low-resolution
CSI image while imposing the lipid-basis penalty. This
way, the truncation artifacts are substantially reduced at
the expense of minimal increase in total scan time. We
then refine this method by incorporating the observation
that the high-resolution lipid ring is sparse in both space
and chemical shift. This leads to successful recovery of
the lipid image via compressed sensing (17,18) using
highly undersampled peripheral k-space data.

To demonstrate the performance of the proposed meth-
ods, single-slice, high-resolution (0.16 mL) CSI data were
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acquired in vivo at 3 T with 20 averages, requiring 33 min
of scan time. Applying the lipid-basis penalty to this high-
resolution data yielded virtually artifact-free spectra,
which were taken to be the gold-standard results. To apply
the basic method with fully sampled lipid data, 20 aver-
ages of low-resolution (0.56 mL, corresponding to 10 min
of scan time) CSI data were combined with two averages of
high-resolution data while imposing lipid-basis penalty,
and reduced-artifact metabolite spectra were obtained
with normalized root-mean-square error (NRMSE) of 8.5%
in the N-acetyl aspartate (NAA) maps relative to the gold-
standard reconstruction. However, using the lipid-basis
penalty approach (16) with 20 averages of 0.56 mL data
yielded 41.3% NRMSE in the NAA maps. Moreover, using
the refined method, a high-resolution lipid layer was esti-
mated via the FOCUSS algorithm (18) from 2-average,
highly undersampled (Rhigh ¼ 10 in the peripheral k-
space) data, which was combined with the 0.56 mL CSI
image followed by lipid-basis penalty reconstruction to
yield 17.0% NRMSE in the NAA map. By incurring only a
minimal increase in the scan time, we demonstrate 4.9-
and 2.4-fold error reduction in metabolite maps relative to
(16) using the basic and refined versions of the proposed
method, respectively. We present further validation for the
application of undersampling and compressed sensing re-
covery using variable-density spirals with 10-fold under-
sampling on a synthetic phantom.

THEORY

Dual-Density Reconstruction

We define ylow to be the k-space representation of low-
resolution CSI data and yhigh to be the k-space represen-
tation of high-resolution data from which the lipid image
will be estimated due to

xlipid ¼ MlipidF
�1
highyhigh ½1�

where xlipid is the high-resolution, masked lipid layer
image, Mlipid is a binary mask marking the location of the
lipid layer, and Fhigh is the Fourier Transform operator
that samples the full extent of high-resolution k-space. As
yhigh usually has low SNR, the masking operation aims to
select only the lipid layer and reduces the amount of noise
that will propagate from the rest of the data.

Next, the low-resolution data are combined with the
high-resolution lipid image via

xdual ¼ F�1
highfðFhigh � FlowÞxlipid þ ylowg ½2�

Here, Flow is the Fourier Transform operator that samples
only the lower frequency indices corresponding to ylow.
Equation [2] can be interpreted as extending the low-re-
solution k-space data using the high-frequency content
of the masked lipid image, which helps reducing the
ringing artifact (11–13).

Iterative Reconstruction with Lipid-Basis Penalty

Again starting with the low-resolution CSI k-space data
ylow, the artifact reduction algorithm in Ref. 16 aims to
solve the convex programming problem

xLB¼argminx||Flowx�ylow||
2
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dataconsistency

þlSi2Mbrain
||LH

lowxi||1
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

lipid�basispenalty

½3�

where Mbrain is a binary mask that indicates the metabo-
lite region, xi is the spectrum at voxel i, l is a regulariza-
tion parameter that needs to be determined, and xLB is
the artifact-suppressed image. We denote the initial
image with truncation artifacts with xlow (where xlow ¼
F�1
lowylow) and form a lipid-basis matrix Llow using the

spectra inside the lipid layer of xlow as column vectors.
Hence, to generate the lipid-basis Llow, the initial image
with artifacts xlow is masked to retain only the lipid ring
voxels. Next, each lipid spectra is assigned to be a col-
umn of the lipid-basis Llow. This way, the lipid-basis ma-
trix will have n columns, where n is the number of vox-
els in the lipid mask, and each of its columns will be a
lipid spectrum. Equation [3] then aims to find spectra
that match the acquired k-space data but at the same
time impose the constraint that no lipid signals arise
from the brain itself.

The cost function in the iterative lipid-basis penalty
reconstruction is composed of data consistency and
lipid-basis penalty terms (Eq. [3]) that penalize the devi-
ation from the k-space samples and the projection onto
the lipid-basis, respectively. As the cost is composed of
a linear combination of the convex ‘2 and ‘1 norms, the
optimization problem is an unconstrained convex pro-
gramming problem, which has the important feature that
all local minima are also global (19).

The Basic Method: Combining 2-Average, High-
Resolution Data With High SNR, Low-Resolution Data

Our first proposal is to combine the two orthogonal lipid
suppression approaches: the dual-density method and the
lipid-basis penalty. We make the additional assumption
that the high-resolution k-space yhigh is obtained with
only two averages, hence it has low metabolite SNR while
having a rapid acquisition time, and that the low-resolu-
tion ylow is acquired with multiple averages to yield
decent metabolite SNR. The combined image xdual is then
formed by the application of Eqs. [1] and [2]. Imposing
lipid-basis penalty on xdual yields the final result,

xbasic ¼ argminx||Fhighx� ydual||
2
2 þ lSi2Mbrain

||LH
dualxi||1

½4�

where ydual¼ Fhigh xdual is the k-space representation of the
high-resolution combined image and xbasic is the artifact-
suppressed spectra obtained with the first proposed
method. In this case, Ldual contains the lipid spectra col-
lected from the combined image xdual. After masking xdual
to retain only the lipid ring voxels, each lipid spectrum is
assigned to be a column of the lipid-basis matrix Ldual. This
way, the lipid-basis is formed using the high-frequency
lipid information present in the combined image xdual.

The Refined Method: Combining 2-Average,
Undersampled High-Resolution Data With High SNR,
Low-Resolution Data

Differently from the first method, yhigh now represents
undersampled, 2-average, high-resolution k-space data.
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Owing to the fact the lipid layer is sparse in both spatial
and spectral domains, we propose to estimate it using
the sparsity-enforcing, iteratively reweighted least-
squares algorithm, FOCUSS (18):

For iteration number t ¼ 1,. . .T,

Wt
j;j ¼ diagðjxt

j j1=2Þ ½5�
qt ¼ argminq||q||

2
2 such that MVFhighW

tq ¼ yhigh ½6�
xtþ1 ¼ Wtqt ½7�

Here, Wt is a diagonal weighting matrix whose jth diago-
nal entry is denoted as Wt

j;j, x
t is the lipid layer estimate

at iteration t whose jth entry is xtj , and MO is the under-
sampling mask in (kx, ky, kf). Masking out the back-
ground yields the final lipid image estimate, xFOCUSS

lipid ¼
Mlipidx

T þ 1. Now, the combined image xFOCUSS
dual is formed

using the compressed sensing-estimated lipid image,

xFOCUSS
dual ¼ F�1

highfðFhigh � F lowÞxFOCUSS
lipid þ y lowg ½8�

and iterative lipid-basis reconstruction is applied as

xrefined ¼ argminx||Fhighx � yFOCUSS
dual ||2

2

þ lSi2Mbrain
||ðLFOCUSS

dual ÞHxi||1 ½9�

to yield the artifact-suppressed image xrefined. Here,

yFOCUSS
dual is the k-space representation of the combined

image xFOCUSS
dual due to yFOCUSS

dual ¼ Fhigh xFOCUSS
dual and LFOCUSS

dual

is the lipid-basis matrix collected from the compressed
sensing reconstructed combined image. In other words,

lipid ring voxels in the combined image xFOCUSS
dual are

selected with masking, then each lipid spectrum is

assigned to be a column of the lipid-basis matrix LFOCUSS
dual .

Hence, the lipid-basis is formed by the lipid spectra in the

compressed sensing reconstructed image, xFOCUSS
dual .

METHODS

A healthy volunteer was scanned at a Siemens 3T scan-
ner using 32-channel receive coil with high spatial reso-
lution, single-slice, constant density spiral CSI (voxel
size ¼ 0.16 mL, FOVxy ¼ 24 cm, slice thickness ¼ 1cm,
echo time ¼ 50 ms, pulse repetition time ¼ 2 s, number
of averages ¼ 20, acquisition time ¼ 33 min, CHESS
pulse applied for water suppression, PRESS-box excites
entire field of view, including the skull). Although the
large number of averages at such high resolution made
the total scan time significantly long, it enabled the
reconstruction of the artifact-suppressed gold-standard
image. At the scanner, this spiral acquisition was coil-
combined after being gridded onto a Cartesian grid, on
which all subsequent processings were performed. The
final gridded matrix size was (x,y,f) ¼ (64,64,512). To
reduce processing times, only the frequencies beyond
the water peak were reconstructed. Lipid layer and brain
masks (Mlipid, Mbrain) were generated manually based on
the high-resolution CSI image. In particular, projection
of the CSI image over the lipid frequencies served as a
guide in determining the lipid mask. Additional data
were collected using a 9 � 9 cm2 PRESS-box to excite

the interior of the brain (voxel size ¼ 0.5 mL, number of
averages ¼ 20, acquisition time ¼ 11 min, with water
suppression), and OVS bands were placed around the
skull to null the lipid signals.

Next, we detail and enumerate the lipid suppression
methods that were applied to the in vivo data:

i. Lipid-basis penalty method: A low-resolution, 20-
average CSI k-space ylow was generated by sam-
pling only the center 32-pixel diameter in kx–ky
plane corresponding to the operator Flow. The
voxel size of this low-resolution image was 0.56
mL (with 1-cm slice thickness), corresponding to a
10-min scan. This image was then processed using
the lipid-basis penalty method (16).

ii. Gold-standard reconstruction: To obtain the gold-
standard spectra, a lipid image was obtained from
the high-resolution 20-average data that was
masked with Mlipid to retain only the lipid ring,
and then combined with the low-resolution 20-av-
erage CSI image as per the dual-density approach
(11–13) in Eq. [2] and iterative reconstruction with
lipid-basis penalty (16) was applied to this com-
bined image to yield the gold-standard spectra.

iii. The basic method: For this method, masked high-
resolution lipid image was obtained from 2-average
high-resolution data and combined with the low-
resolution 20-average CSI image. Lipid-basis pen-
alty reconstruction was then applied to this com-
bined image.

iv. The refined method: Here, the high-resolution lipid
image was estimated from significantly under-
sampled 2-average data. In addition to the fully
sampled center 32-pixel diameter k-space, the pe-
ripheral k-space region was substantially under-
sampled (Rhigh ¼ 10). In particular, Cartesian
undersampling was applied to the gridded data in
all three dimensions by generating a randomly
undersampled kx–ky sampling mask at each kf sam-
ple. High-resolution lipid image was reconstructed
with the FOCUSS algorithm (18) using the under-
sampled k-space data. This lipid layer estimate
was then combined with the low-resolution CSI
image, and lipid-basis penalty was applied to fur-
ther reduce the ringing artifacts.

v. Dual-density method: Finally, the dual-density
method (11–13) was applied without using lipid-
basis penalty, by obtaining a masked high-resolu-
tion lipid image obtained from 2-average high-reso-
lution data and combining it with the low-
resolution 20-average CSI image.

To provide a more practical undersampling example, a
synthetically generated phantom was also studied. A Car-
tesian CSI phantom was formed using metabolite data
from a spectroscopic phantom scanned at 3 T with a voxel
size of 0.16 mL, and surrounding the phantom with in
vivo lipid spectra sampled from the 20-average, 0.16 mL
human subject dataset (Fig. 7). Hence, the metabolite spec-
tra in the numerical phantom are derived from a spectro-
scopic phantom where no lipids are present, resulting in
metabolite signals free of any lipid contamination. Also,
each lipid spectrum in the lipid layer of the numerical
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phantom is unique and comes from an in vivo acquisition
where spatial variations of lipids occur naturally. No syn-
thetic noise was added to the numerical phantom, the
only noise present is due to the acquisition of the source
signals. The peak-to-peak NAA—lipid amplitude ratio
was selected to be 1:100. As the Cartesian phantom dem-
onstrates no lipid ringing artifacts by design, it also serves
as the gold-standard image. First, a constant density spiral
sampling pattern at Nyquist rate was generated using
time-optimal gradient design toolbox (20), from which spi-
ral k-space data were generated using the nonuniform FFT
toolbox (21). Artifact suppression with lipid-basis penalty
was applied to obtain a high-resolution lipid-suppressed
image based on the spiral k-space samples. Second, a vari-
able-density spiral trajectory with Nyquist rate sampling
in the first half of the k-space and undersampling with
Rhigh ¼ 10 in the second half of the k-space was generated.
High-resolution lipid image estimate was generated using
FOCUSS algorithm with nonuniform FFT based on the
undersampled spiral data. Next, a combined image was
formed using the high-resolution lipid estimate and the
fully sampled portion of the k-space iteratively. Lipid-ba-
sis penalty was applied to yield an artifact-suppressed
image. Finally, a low-resolution image was generated
using only the first of the spiral k-space, which was then
processed with the lipid-basis penalty. The Cartesian
image without artifacts serves as a substitute for the gold-
standard in vivo reconstruction, the Nyquist-rate sampled
spiral data represent the in vivo basic method reconstruc-
tion, and the undersampled spiral data stand for the in
vivo refined reconstruction. Likewise, the low-resolution

spiral image is intended to represent the low-resolution in
vivo image with lipid-basis penalty. Matlab implementa-
tion that reproduces the in vivo results can be found at:
http://web.mit.edu/berkin/www/software.html.

Choosing an Optimal Regularization Parameter

To choose an optimal regularization parameter l for the
lipid-basis penalty that balances the data consistency and
artifact suppression, the L-curve approach was used (22)
for the in vivo study. After running the iterative recon-
struction to compute the gold-standard image for several
different regularization parameters, the resulting data con-
sistency ||Fhighxgold � ydual||2 and lipid-basis norms
Si[Mbrain

||LHdual xgold,i||1 traced a curve from which the
data point with the largest curvature was chosen to be the
optimal l. Analytical curvature computation became pos-
sible by expressing the data consistency and lipid-basis
penalty as functions of l by cubic spline fitting. The opti-
mal value of l ¼ 10�3 that is determined from the gold-
standard dataset was then used for all iterative recon-
structions in this work, where the optimization problems
were solved using the conjugate gradient algorithm (19).
Figure 1 depicts the resulting L-curve and projections
over the lipid frequencies for various l values as well as
the curvature values at the sample points.

In the phantom study, l ¼ 10�1 was taken to be the
value of the regularization parameter for all iterative
reconstructions.

FIG. 1. The L-curve traced by the data consistency and lipid-basis penalty terms as the regularization parameter l varies. Summation
over lipid frequencies for under-regularized (a), optimally regularized (b), and over-regularized reconstructions (c) are presented. Panel
(d) depicts the analytically computed L-curve curvature results for the sample points. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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RESULTS

Artifact reduction performances of the five methods
under evaluation as well as spectra without any lipid
suppression are compared by taking projections over the
lipid resonance frequencies in Fig. 2. High-quality lipid
images are obtained with the gold-standard (20 avghigh,
Rhigh ¼ 1, denoting that 20 averages of high-resolution
data are used without peripheral k-space undersampling,
shown in Fig. 1a), and the basic and refined methods (2
avghigh, Rhigh ¼ 1 in Fig. 1b and 2 avghigh, Rhigh ¼ 10 in
Fig. 1c). Iterative reconstruction with lipid-basis penalty
(16) also demonstrates substantial artifact reduction (Fig.
2d) while not being able to completely remove the ring-
ing inside the brain. Using the dual-density approach
(11–13) without lipid-basis penalty (Fig. 2e) provides
partial artifact reduction relative to the low-resolution
CSI image with no lipid suppression (Fig. 2f).

Figure 3 validates the observation seen in Fig. 2 in terms
of NRMSE by comparing the lipid-basis penalty algorithm
and the two proposed artifact reduction methods with the
gold-standard NAA map. All maps are generated by
simple integration of NAA peaks over a 37.5 Hz band-
width. Although the lipid-basis algorithm (16) has 41.3%
error in the NAA maps relative to the gold-standard, the
basic method (2 avghigh, Rhigh ¼ 1) reduces the error by 4.9
times to yield 8.5% error, and the refined method
(2 avghigh, Rhigh ¼ 10) by 2.4 times to give 17.0% error rela-
tive to lipid-basis penalty approach.

Figure 4 presents the NAA maps computed within the
9 � 9 cm2 excitation box used in the OVS acquisition.
By taking the OVS NAA images as ground truth, the rela-
tive errors were found to be 11.1% for the gold-standard
(20 avghigh, Rhigh ¼ 1, shown in (a)), 11.5% for the basic
(2 avghigh, Rhigh ¼ 1, shown in (b)), 12.9% in the refined

method (2 avghigh, Rhigh ¼ 10, shown in (c)), and 14.7%
in the NAA map produced by the lipid-basis penalty
algorithm (shown in (d)). Reconstructed spectra are also
overplotted with the OVS spectra for the four methods.

Figures 5 and 6 show the performances of the lipid-ba-
sis algorithm (16), the proposed methods, and the gold-
standard reconstruction by comparing representative
spectra in the vicinity of two sides of the skull. Panels
(a), (b), and (c) in Figs. 5 and 6 overplot the spectra from
the gold-standard with lipid-basis method (16), the basic
method (2 avghigh, Rhigh ¼ 1), and the refined method (2
avghigh, Rhigh ¼ 10), respectively.

Lipid suppression experiment performed with the syn-
thetic phantom is depicted in Fig. 7. Panel (a) depicts the
NAA and lipid maps from the Cartesian, artifact-free
phantom and includes spectra free of contamination. In
panel (b), lipid-basis penalty is applied to the phantom
that was sampled on a spiral trajectory at Nyquist rate, to
yield 41.9% error in the NAA map. In (c), lipid suppres-
sion results with undersampled spiral trajectory are pre-
sented. In this case, NAA map was recovered with 41.7%
error. Panel (d) depicts the performance of lipid-basis pen-
alty method when the k-space was sampled at half of the
full resolution to yield 104.1% NRMSE in the NAA map.

The total reconstruction time for the in vivo dataset
was 7 min for the iterative lipid-basis penalty algorithm
and 4 min for compressed sensing reconstruction of the
high-resolution lipid image with the FOCUSS algorithm
on a workstation running Matlab with 48 GB memory
and 12 processors.

DISCUSSION

The dual-density method makes use of the fact that sub-
cutaneous lipid signals have several orders of magnitude

FIG. 2. Comparing the different

artifact reduction algorithms by
taking projections over the lipid

resonance frequencies (in dB
scale). Gold-standard recon-
struction is obtained using 20

averages of high-resolution data
without peripheral k-space
undersampling (20 avghigh, Rhigh

¼ 1, shown in (a)), whereas the
basic proposed method is

obtained using two averages of
high-resolution data without
undersampling (2 avghigh, Rhigh ¼
1, shown in (b)) and the refined
proposed method uses 10-fold

undersampled, 2-average high-
resolution data (2 avghigh, Rhigh ¼
10, shown in (c)). Lipid suppres-

sion results obtained using only
lipid-basis penalty method and

only dual-density approach are
depicted in panels (d) and (e),
respectively. Applying no lipid

suppression (f) results in severely
corrupted spectra.
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FIG. 3. Comparison between NRMSE val-
ues of NAA maps relative to the gold-

standard reconstruction.

FIG. 4. Comparison between NRMSE values of NAA maps computed within the 9 � 9 cm2 excitation box relative to the NAA maps
obtained with the OVS method. In (a), reconstruction results obtained using the gold-standard (20 avghigh, Rhigh ¼ 1) method (blue) and the
OVS spectra (black) belonging to the region inside the red box are also overplotted. In (b), the basic proposed method (blue) and the OVS

spectra are compared. The spectra obtained with the refined method (blue) and the OVS results (black) are overplotted in (c). Lipid-basis
penalty and OVS spectra are compared in (d). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of higher amplitudes than the brain metabolites, which
enables their estimation from single-average, high-resolu-
tion data. In this study, the high-resolution lipid images
had a voxel size of 0.16 mL, whereas the previous imple-
mentations of the dual-density method enjoyed a smaller
voxel size (128 � 128 matrix size in Ref. 13 and 0.076
mL voxels with 128 � 128 matrix size in Ref. 11). Natu-
rally, the dual-density method is expected to perform
better with increased lipid image resolution, however at
the cost of increased scan time. As the dual-density idea

constitutes an important part of our proposed methods,
their performances are also expected to increase when
even higher resolution lipid priors are available. The
optimal selection of the high-resolution voxel size to bal-
ance the impact on total scan time and lipid artifact
reduction remains an open problem.

In this work, selection of the lipid mask was per-
formed manually, with the guidance of the projection
over lipid resonance frequencies. The brain mask was
then assigned to be region remaining inside the lipid

FIG. 5. Comparison of spectra inside the region of interest marked with the red box that were obtained with different lipid suppression
methods. In (a), reconstruction results obtained using lipid-basis penalty method (blue) and the gold-standard reconstruction (black) are
overplotted. In (b), the basic proposed method (blue) and the gold-standard spectra are presented. The spectra obtained with the

refined method (blue) and the gold-standard results (black) are plotted in (c). [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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mask. A more elegant approach can involve a pilot struc-
tural scan acquired at the same resolution as the lipid
image, which can be then segmented (e.g., using Free-
Surfer (23)) to yield the skull and brain regions. A simi-
lar idea was also implemented in Ref. 16.

A similar approach that also restricts the space in
which the metabolite signals reside is by Eslami and
Jacob (24), where the spectrum at each voxel is parame-
terized as a sparse linear combination of spikes and

polynomials to capture the metabolite and baseline
components, respectively. Their elegant method is a
holistic framework that performs field map compensa-
tion, noise reduction, and lipid artifact reduction
simultaneously. In particular, their lipid suppression
performance was seen to be comparable with extrapola-
tion methods (15). Our proposed methods involve no
parametric signal modeling, but they simply minimize
projection onto lipid spectra. Hence, it might be

FIG. 6. Comparison of spectra inside the region of interest marked with the red box that were obtained with different lipid suppression
methods. Panel (a) overplots reconstruction results using lipid-basis penalty method (blue) and the gold-standard reconstruction (black).

In (b), the basic proposed method (blue) and the gold-standard spectra are compared. The spectra obtained with the refined method
(blue) and the gold-standard results (black) are depicted in (c). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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possible to combine Eslami and Jacob’s method synerg-
istically with our proposed schemes to further refine
the metabolite spectra.

The L-curve analysis used for selecting an optimal reg-
ularization parameter l revealed that the operating
points on the curve map virtually to the same point for a
wide range of parameters (Fig. 1). In particular, the data
consistency increases only 0.05% and the regularization
decreases only 3.8% as l increases from 10�2 to 102.
Hence, if a slightly over-regularized reconstruction is ac-
ceptable, the selection of l does not pose a problem as
the reconstruction results are insensitive to its selection.

From a sequence design point of view, the three-
dimensional Cartesian undersampling pattern used in
the in vivo dataset will not be feasible within the spiral
CSI framework, as the samples were randomly removed
in the Cartesian k-space of the gridded CSI data. Our
ongoing work involves designing undersampled trajecto-

ries that will make the refined method feasible for in
vivo acquisitions (25).

Lipid suppression results obtained with the synthetic
phantom demonstrates the feasibility of spiral undersam-
pling. Relative to the conventional, low-resolution spiral
reconstruction in Fig. 7d, the example spectra obtained
with undersampled spirals in Fig. 7c exhibit substan-
tially reduced lipid ringing artifacts in the vicinity of the
lipid ring. Relative to the Nyquist rate spiral reconstruc-
tion, compressed sensing reconstruction with 10-fold
accelerated spirals yielded comparable NAA maps and
spectra. Although this work focused on undersampled
spiral trajectory, other families of readout trajectories can
be deployed in the proposed scheme, e.g., a trajectory
that continues along the tangent of the spiral at the end
of the low-resolution k-space (spiral þ radial).

In vivo reconstructions at echo time ¼ 50 ms with the
basic and refined methods exhibit successful artifact

FIG. 7. Lipid and NAA maps and artifact-free spectra for the Cartesian synthetic phantom are shown in (a). In (b), spiral sampling tra-

jectory at Nyquist rate and reconstruction results upon the application of lipid-basis penalty are depicted. Using the undersampled spiral
trajectory in (c), a high-resolution lipid image was estimated using FOCUSS, from which a combined image was computed due to the
dual-density method. Finally, lipid-basis penalty was applied to this combined image. Panel (d) shows lipid suppression results when

the k-space is sampled only at half of the full resolution and lipid-basis penalty is applied. For the three reconstruction methods, the
example spectra (plotted in blue) belong to the region of interest marked with the red box and are overplotted with the artifact-free

spectra (in black) for comparison. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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suppression in the cortical region (Figs. 5 and 6).
Relative to the gold-standard reconstruction (20 avghigh,
Rhigh ¼ 1) corresponding to a 33-min scan, the proposed
methods yielded comparable NAA maps (Fig. 3) with
substantial savings in the imaging time. Although using
the lipid-basis penalty at 0.56 mL voxel size (correspond-
ing to a 10-min scan) gives effective lipid suppression,
the presence of residual lipid artifacts is visible in the
lipid and NAA maps (Figs. 2 and 3) and the cortical
spectra (Figs. 5 and 6).

For additional validation, the reconstruction methods
were also compared with a commercially available lipid
suppression method, OVS. Taking the NAA maps
obtained with OVS as ground truth, the four methods,
namely, gold-standard (20 avghigh, Rhigh ¼ 1), basic (2
avghigh, Rhigh ¼ 1), refined (2 avghigh, Rhigh ¼ 10), and
lipid-basis penalty, yielded similar fidelity where the
gold-standard gave the smallest error (11.1%) and the
lipid-basis penalty method had the largest mismatch
(14.7%). As the OVS method is obtained by exciting a 9

� 9 cm2 box inside the brain surrounded by suppression
bands to null the lipid signal, the comparison is limited
to the interior of the brain where the lipid ringing arti-
facts are milder than the periphery of the cortex. It is
seen that the spectra reconstructed with the lipid-basis
method still demonstrate residual artifacts while the pro-
posed methods are free of lipid ringing (Fig. 4). To com-
pute the RMSEs relative to the NAA map obtained from
the OVS acquisition, all methods were masked in k-
space to match the resolution of the OVS scan and the
mean intensities of the NAA images were scaled to
match the mean intensity of the OVS map.

Relative to the lipid-basis penalty method (16), the
drawback of the proposed basic algorithm is the addi-
tional scan time required for collecting the peripheral k-
space information. The refined method addresses this
problem by aggressively undersampling the high k-space
and exploiting the spatial and spectral sparsity of the
lipid ring. Although this entails an additional iterative
reconstruction step for the FOCUSS (18) algorithm, the

FIG. 8. Demonstration of approximate orthogonality between metabolite spectra obtained from in vivo OVS scan and lipid spectra from

high-resolution in vivo acquisition. In (a), the lipid and metabolite spectra with the highest orthogonality are plotted. In (b), the compo-
nents of the metabolite spectrum that are orthogonal and parallel to the lipid spectrum for the best case in (a) are overplotted. The

actual metabolite spectrum (in blue) is totally occluded by the orthogonal component (in orange). In (c), the lipid and metabolite spectra
that are least orthogonal are depicted. In (d), the orthogonal and parallel components of the metabolite spectrum are overplotted for the
worst case in (c). Panel (e) depicts the methodology used in computing the orthogonal and parallel metabolite components. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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computational requirements of the refined method is not
prohibitive for in vivo applications, taking only 11 min
of processing time on a workstation.

The validity of the approximation that lipid and
metabolite spectra are orthogonal is demonstrated in Fig.
8. All lipid spectra inside the lipid mask were selected
from the 33 min, 20 average in vivo scan (578 lipid spec-
tra in total), and all metabolite spectra were chosen from
the in vivo OVS acquisition (521 metabolite spectra in
total). For each lipid spectrum, the parallel and orthogo-
nal components of each metabolite spectrum were com-
puted. Based on this, the worst and best case situations
were identified, where the ratio of energy in the parallel
and orthogonal components were highest and lowest,
respectively. Figure 8a overplots the lipid and metabolite
spectra in the best case scenario. Even though the NAA
peak completely overlaps with the lipid signal in reso-
nance frequency, the component of the metabolite spec-
tra parallel to the lipid signal has almost no energy com-
pared to the orthogonal component. Figure 8c shows the
worst case scenario for the lipid and metabolite spectra
with the least degree of orthogonality. In this case, paral-
lel and orthogonal components have comparable signal
energy. When averaged over all lipid and metabolite
spectra, the ratio of parallel component energy to orthog-
onal component energy was 15.6%, showing that the
orthogonality assumption is a reasonable one in practice.

Limitations of this study include that,

i. No B0-correction was used in postprocessing, but
simply the data acquired at the scanner were used
as input to the proposed lipid suppression meth-
ods. Therefore, more refined metabolite images can
be obtained when local B0 shifts are taken into
account, e.g., Fig. 2 in Ref. 26 and Fig. 3 in Ref. 5.

ii. The practical implementation of the dual-density
method is considerably challenging, but this has
been addressed adequately by previous investiga-
tors, e.g., (11,13). Similarly, practical realization of
prospective undersampling with spiral readout is
challenging.

CONCLUSIONS

The proposed lipid suppression algorithms combine and
extend two previously proposed approaches, dual-den-
sity sampling and lipid-basis orthogonality, with mini-
mal increase on the total scan time by collecting only 2-
average high-resolution data and aggressive undersam-
pling (R ¼ 10) of high-frequency k-space. We demon-
strated successful in vivo lipid suppression performance
with artifact-free observation of metabolite spectra even
in the peripheral cortical regions without any other
means of lipid suppression during acquisition at echo
time ¼ 50 ms.
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