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INTRODUCTION: In diagnostic MRI, it is routine to acquire multiple images of the same 
region of interest (ROI) with different contrast preparations. In such multi-contrast 
acquisitions, joint Bayesian image reconstruction [1] exploits the mutual information across 
the shared ROI for improved image quality in accelerated acquisitions with undersampling of 
each contrast. As acquisition times vary among different contrasts, the overall scan time for 
joint multi-contrast imaging can be minimized for a fixed amount of undersampling by 
modulating the degree of undersampling among the different contrast preparations. Here, we 
extend the joint Bayesian framework to asymmetric undersampling schemes where one 
contrast image is fully sampled while other contrasts are undersampled. 
THEORY: Given L undersampled images {xi}i=1,L∈ℂN acquired with different contrasts and a 
fully-sampled image xprior, a sparse representation is obtained by taking the spatial gradients in 
k-space: FΩ δi = (1−e−2πjk) yi ≡ zi, where FΩ∈ℂM×N is the undersampled Fourier operator, 
{δi}i=1,L are the image gradients, k is the k-space index and {yi}i=1,L are the k-space data. The 
gradient of the prior image is directly computed as δprior = F−1{(1−e−2πjk/n) yprior}. We utilize 
both vertical and horizontal gradients, and omit the distinction for simplicity. The data are 
modeled to be corrupted by complex Gaussian noise with variance σ2, yielding the data 
likelihood p(zi |δi,σ2) = ࣨ(FΩ δi, σ2I). Joint Bayesian CS [1,2] places a Gaussian prior across 
each pixel of the L images to couple them, p(δ.t |γt) = ࣨ(0, γt I), where δ.t∈ℂL is the vector 
formed by taking the tth pixel in each image and γt is a hyperparameter controlling the variance. 
By multiplicative combination of all pixels, full prior distribution is obtained, p(δ |γ) = ∏t=1,N 
p(δ.t |γt). Combining the likelihood and the prior with the Bayes’ rule, posterior for the ith 
image becomes p(δi |zi,γ) = ࣨ(μi, Σ), with (i) Σ = Γ−ΓFΩ

HA−1FΩΓ and (ii) μi = ΓFΩ
HA−1zi 

where A ≡ σ2I+FΩΓFΩ
H and Γ ≡ diag(γ). The posterior distribution is fully characterized if the 

hyperparameters γ are estimated, which can be done with an EM-type algorithm by iteratively 
applying Eqs. (i) & (ii) followed by the update γt

new = ||μ.t||2/(L−LΣtt /γt). By using the prior 
image to initialize the EM iterations, γt

initial = |δprior,t|2, the known sparsity support of δprior 
facilitates the recovery of the undersampled images. After estimating the vertical and 
horizontal gradients, we find images {xi}i=1,L consistent with these and the k-space data 
{yi}i=1,L by solving a least squares problem. 
METHODS: Bayesian CS with prior was applied to two datasets, which were also 
reconstructed with the CS algorithm by Lustig et al. [3] using total variation penalty with an 
optimal regularization parameter that yielded the smallest normalized root-mean-square error 
(NRMSE). The first set consists of T2-weighted images obtained with two different TE’s 
using a TSE sequence (212×212 pixels, 1×1×3 mm3, TR=6000, TE1=27, TE2=94 ms). An 
early echo slice was retrospectively undersampled with a random 2D pattern using acceleration R = 4 while the late echo image was kept fully 
sampled to serve as prior. The second dataset is derived from the SRI24 atlas [4] that features proton density (PD), T2 and T1 weighted scans at 
200×200 size. Single slices from the T2 and T1 weighted images were undersampled along phase encoding with acceleration R = 4, while the PD 
image was kept fully sampled to supply prior information. An approximate solution to the large-scale matrix inversion A−1 in Eq. (i) was computed 
iteratively by Lanczos algorithm with partial reorthogonalization [5] for the Bayesian CS algorithm. 
RESULTS: Fig. 1 depicts the TSE dataset 
reconstruction results, for which Lustig et al.’s 
algorithm yielded 9.3% NRMSE, while Bayesian CS 
with prior information had 5.8% error. Results for 
the SRI24 dataset are given in Fig. 2. Here, Lustig et 
al.’s method yielded 9.5% NRMSE, and the error 
was 4.3% for Bayesian CS that jointly reconstructed 
T2 and T1 images with the help of fully-sampled PD 
image. Joint Bayesian CS [1] without using a prior 
had 4.9% error (not shown). All error plots are 
scaled 10×. 
DISCUSSION: The presented method makes use of 
the known sparsity support of a fully-sampled image 
only to initialize Bayesian CS iterations, and hence 
avoids imposing this support on the reconstructed 
images. Acquiring a fully-sampled prior is desirable 
in cases where one imaging sequence is significantly 
faster than the other contrast weightings, e.g. an MP-
RAGE acquisition along with other contrasts.  
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Fig. 1. (a) Lustig et al.’s algorithm [3] yielded 9.3%
error (b) absolute error for [3] (c) Bayesian CS with
prior returned 5.8% error (d) error for Bayesian CS
(e) fully-sampled prior  (f) R=4 sampling pattern

(c) 

(a) (b) 

(d) 

Fig. 2. (a1-a2) Lustig et al.’s algorithm [3]
yielded 9.5% error (b1-b2) absolute error
plots for [3] (c1-c2) Joint Bayesian CS with
prior returned 4.3% error (d1-d2) error plots
for Bayesian CS (e) fully-sampled PD
weighted prior image (f) R=4 random
undersampling pattern in 1D (e) Prior image (f) R=4 sampling

Joint Bayesian CS with prior: 4.3% NRMSE 

Lustig et al. TV penalty: 9.5% NRMSE 
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