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Abstract—We present an integral image algorithm that can 

run in real-time on a Graphics Processing Unit (GPU). Our 

system exploits the parallelisms in computation via the NIVIDA 

CUDA programming model, which is a software platform for 

solving non-graphics problems in a massively parallel high-

performance fashion. This implementation makes use of the 

work-efficient scan algorithm that is explicated in [5]. Treating 

the rows and the columns of the target image as independent 

input arrays for the scan algorithm, our method manages to 

expose a second level of parallelism in the problem. We 

compare the performance of the parallel approach running on 

the GPU with the sequential CPU implementation across a 

range of image sizes and report a speed up by a factor of 8 for a 

4 megapixel input. We further investigate the impact of using 

packed vector type data on the performance, as well as the 

effect of double precision arithmetic on the GPU. 

 

I. INTRODUCTION 

he use of integral images for rapid feature evaluation 

became popular with the seminal face detection 

algorithm proposed by Viola and Jones [1]. The features 

employed in the detector are reminiscent of Haar basis 

functions and form an overcomplete set for image 

representation. Obtaining the proposed features involves 

computing sums of pixel values over rectangular regions. 

Since these sums can be calculated by using only 4 array 

references with the integral image, evaluating this set of 

Haar-like features is very cheap, once the integral image is 

computed.  

 An alternative motivation for the integral image arises 

from the signal processing literature. In the “boxlets” work 

of Simard et al. [12], authors point out that in the case of 

linear operators (e.g. the inner product f ∙ h), any invertible 

linear operation can be applied to either f or h if the inverse 

operation is applied to the other operand. From this point of 

view, the integral image can be expressed as a dot product, i 

∙ r, where i is the input image and r is the box car function 

that takes the value 1 inside the rectangle of interest and 0 

outside. This summation can be written as 

 
Final manuscript received May 15, 2010.  

B. Bilgic is with the Department of Electrical Engineering and 

Computer Science, MIT, Cambridge, MA 02139, USA (e-mail: 

berkin@mit.edu). 

B.K.P. Horn is with the Department of Electrical Engineering and 

Computer Science and CSAIL, MIT, Cambridge, MA 02139, USA  (e-mail: 

bkph@csail.mit.edu). 

I. Masaki is with the Department of Electrical Engineering and 

Computer Science and MTL, MIT, Cambridge, MA 02139, USA (e-mail: 

IMasaki@aol.com). 

  riri    

where the double integral of the image, obtained by 

summation first along the rows and then along the columns, 

is in fact the integral image and the second derivative of the 

boxcar function gives rise to four delta functions at the 

corners of the image. This is exactly the same idea as using 4 

array references to compute the integral image.  

 This integral image formulation has allowed the Viola-

Jones face detector to run in real-time, and influenced the 

development of several other computer vision algorithms. 

Among these, [2, 8] apply the integral image to histograms, 

thus extending its usage from Haar-like wavelets to more 

complex features such as the Histograms of Oriented 

Gradients [9] descriptors. 

 Even though the systems that incorporate the integral 

image approach as an intermediate component have been 

reported [2, 3, 7] to have training times in the order of days, 

they experience significant performance benefits. It is 

possible to build on this boost in speed by realizing such 

methods on general purpose GPUs, and obtain real-time 

performances [3]. 

 A sequential implementation for integral image 

computation would require 2∙w∙h operations for an image of 

size w×h. As the size gets larger, this cost represents a 

significant overhead for the overall algorithm. Messom and 

Barczak [4] adopt a parallel processing approach to reduce 

this overhead. Their realization is based on the Brook stream 

processing language and demonstrates that employing the 

GPGPU paradigm results in significant performance 

benefits. 

 The term GPGPU refers to using graphics processing units 

to accelerate non-graphics problems. The many-core 

architecture of the new generation GPUs enables them to 

execute thousands of threads in parallel. These threads are 

managed with zero scheduling overhead and are lightweight 

compared to CPU threads. To fully utilize the great 

computational horsepower of the GPUs, thousands of threads 

need to be launched within each parallel routine. The 

potential benefit of employing a graphics card can be 

quantified by the theoretical floating point performance of 

the device. Whereas modern CPUs have peak performances 

on the order of 10 GFLOPs, commercial GPUs can exceed 

the 1 TFLOP limit. Since the integral image formulation is a 

compute-intensive, parallelizable task, we present a GPU 

implementation using the widely adopted NVIDIA CUDA 

programming model in this work.  

 In the rest of this paper, we provide the sequential integral 
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image algorithm, give a brief background on the CUDA 

platform and detail our parallel algorithms. We conclude by 

commenting on the effect of using double precision and 

vector type data, and compare the performance with our 

sequential implementation. 

II. THE SEQUENTIAL INTEGRAL IMAGE ALGORITHM 

For an image of size w×h, we form the integral image on 

the CPU using the following algorithm, 
 

Algorithm: Sequential integral image formulation 
 

I : input image with size w×h 

Iint : integral image with size w×h 

Array elements are accessed in row major order. 
 

for x = 0 to w−1 do 

      Iint [x] ← 0 

for y = 1 to h−1 do 

   Iint [y∙w] ← 0 

   s ← 0 

      for x = 0 to w−1 do 

         s ← s + I [x + (y−1)∙w] 

   Iint [x + y∙w + 1] ← s + Iint [x + (y−1)∙w + 1] 

 

We note that the output of this algorithm is an exclusive 

integral image, which is padded on the first row and the 

column by zeros and has the same size as the input. For 

instance, the image 
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III. NVIDIA CUDA PROGRAMMING MODEL 

CUDA is the computing platform in NVIDIA graphics 

processing units that enables the developers to code parallel 

algorithms thorough industry standard languages. The 

CUDA programming model acts as a software platform for 

massively parallel high-performance computing by providing 

a direct, general-purpose C language interface „C for CUDA‟ 

to the programmable multiprocessors on the GPUs. 

According to this model, parallel portions of an application 

are executed as kernels.  CUDA allows these kernels to be 

executed multiple times by multiple threads simultaneously. 

A typical application would use thousands of threads to 

achieve efficiency.  

 At the core of the model lie three abstractions – a 

hierarchical ordering of thread groups, on-chip shared 

memories, and a barrier instruction to synchronize the 

threads active on a GPU multiprocessor. In order to scale to 

future generation graphics processors, multiple threads are 

grouped in thread blocks and multiple blocks reside in a grid 

that has user specified dimensions. Thread blocks may 

contain up to 512 threads, and the threads inside a block can 

communicate via low latency, on-chip shared memory. To 

prevent read-after-write, write-after-read, and write-after-

write hazards, __syncthreads() command can be used to 

coordinate communication between the threads of the same 

block. A group of 32 threads that are executed physically 

simultaneously on a multiprocessor is called a warp.  

 There are six different memory types in the CUDA model 

that provide flexibility to the programmer. Apart from the 

shared memory (16kB) that is visible to all threads within a 

block, each thread has access to a private local memory and 

registers. Additionally, there are three types of off-chip 

memory that all threads may reach. The global memory 

(1792MB) has high latency and is not cached. The constant 

memory (64kB) is cached and particularly useful if all 

threads are accessing the same address. The texture memory 

is also cached and optimized for spatial locality, so threads 

of the same warp that read texture addresses that are close 

together will achieve best performance. Textures can be 

bound to either linear memory or CUDA arrays; hence their 

maximum sizes depend on the particular data structure they 

are used with. Textures also provide hardware interpolation, 

which has very small performance cost. 

 The fact that shared memory resides on the 

multiprocessors where computations are performed whereas 

the global memory types are off-chip is reflected by the vast 

difference in their access speeds. It takes about 400 to 600 

clock cycles to issue a memory instruction for the global 

memory, but the same operation occurs about 150 times 

faster in the shared memory. Therefore, if the same addresses 

need to be accessed multiple times, it would be beneficial to 

reach them via the shared memory. 

  

IV. PARALLEL ALGORITHMS FOR INTEGRAL IMAGE 

COMPUTATION 

We start by explaining the parallel prefix sum (scan) 

algorithm [5] which constitutes the foundation of our 

method. Next, we relate how this algorithm can be used as a 

building block by applying it first on the rows of the image, 

then taking the transpose, and again applying parallel scan 

on the rows of the transposed array to obtain the integral 

image. 

A. Parallel prefix sum (scan) 

The all-prefix-sums operation takes a binary associative 

operator ⊕, and an array of n elements 

],...,,[ 110 naaa  

and returns  

)]...(),...,(,[ 110100  naaaaaa  

If we let the operator ⊕ be summation, we obtain the 

inclusive scan operation. If we shift the resulting array to the 

right by one element and insert the identity in the beginning, 

we end up with the exclusive scan operation, which returns 

)]...(),...,(,,0[ 210100  naaaaaa  

In the rest of this paper, we will be focusing on the exclusive 

version of the operation, and simply refer to it as scan. 
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 For an input array with size n, the scan algorithm has 

computational complexity of O(n), and it consists of two 

phases: the reduce phase (or the up-sweep phase) and the 

down-sweep phase. We can visualize the reduce phase as 

building a binary tree (Figure 1), at each level reducing the 

number of nodes by half, and making one addition per node. 

Since the operations are performed in place using shared 

memory, the tree we build is not an actual data structure, but 

helps explaining the algorithm.  

 
 In the down-sweep phase, we traverse the tree from the 

root to the leaves, and use the partial sums we computed in 

the reduce phase to obtain the scanned array. We note that 

the last element is set to zero in the beginning and it 

propagates to reach the beginning of the array, thus resulting 

in an exclusive computation (Figure 2). 

 

 
 

The overall cost of these phases is 2(n−1) summations and 

(n−1) swaps, which is in O(n) time, same as the sequential 

algorithm. Following [5], we provide the CUDA kernel that 

implements the scan algorithm below: 
 

 

CUDA Code: Scan kernel for the GPU 
 

__global__ void scan(float *input, float 

*output, int n) 

{ 

  extern __shared__ float temp[]; 

  int tdx = threadIdx.x; int offset = 1; 

 

  temp[2*tdx]   = input[2*tdx]; 

  temp[2*tdx+1] = input[2*tdx+1]; 

 

  for(int d = n>>1; d > 0; d >>= 1) 

  { 

    __syncthreads(); 

       if(tdx < d)  
    { 

      int ai = offset*(2*tdx+1)-1;  

      int bi = offset*(2*tdx+2)-1; 

      temp[bi] += temp[ai]; 

    } 

    offset *= 2; 

  } 

 

  if(tdx == 0) temp[n - 1] = 0; 

 

  for(int d = 1; d < n; d *= 2) 

  {  

    offset >>= 1; __syncthreads(); 

    if(tdx < d) 

    { 

      int ai = offset*(2*tdx+1)-1;  

      int bi = offset*(2*tdx+2)-1; 

 

      float t  = temp[ai]; 

      temp[ai] = temp[bi]; 

      temp[bi] += t; 

    } 

  } 

  __syncthreads(); 

  output[2*tdx]   = temp[2*tdx];  

  output[2*tdx+1] = temp[2*tdx+1]; 

} 

 

Even though this kernel is work efficient, it suffers from 

bank conflicts in the shared memory. In our implementation, 

we try to avoid these conflicts by adding a variable amount 

of padding to each shared memory index we use, as 

suggested in [5]. The amount we add is equal to the value of 

the index divided by the number of memory banks, which is 

equal to 16 for our graphics card. 

As it is, this kernel is unable to scan arrays with sizes 

larger than 1024, since the maximum number of threads per 

block is 512 and a single thread loads and processes two data 

elements. Influenced by [10], we solve this problem by 

employing several thread blocks and making them 

responsible for a certain part of the input. If we let the input 

array contain n elements and if each block processes b of the 

entries, we need to launch n/b thread blocks and b/2 threads 

in each block. With the usual scan algorithm, each thread 

block scans its part of the array, but before zeroing the last 

Figure 2: The down-sweep phase. At each level of the tree, 

there are as many swapping operations as summations. 
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Figure 1: (a) The reduce phase applied on an array of four 

elements. (b) Binary tree view of the algorithm. Scanning is 

performed from the leaves to the root, where the root contains 

the sum of all four elements. 
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element that contains the sum of all the elements in that 

segment, we register it to an auxiliary array Isum. We then 

scan this array in place and add Isum[i] to all elements of the 

segment that (i+1)
st
 thread block is responsible for. Figure 3 

tries to further illustrate this. To handle inputs with a size 

that is not a power of two, we pad the last segment of the 

array before scanning. 

 

B. Scanning the image rows 

We treat each row of the image as an independent array 

and scan the rows in parallel. In our implementation, each 

row is divided into segments of 512 pixels, and each segment 

is processed by a thread block consisting of 256 threads. 

Hence, we launch a scan kernel using a grid with dimensions 

nseg×h, where nseg is the number of segments in each row, and 

h is the height of the image.  

 

 

C. Computing the Transpose 

After scanning the rows of the image, we take the transpose 

of the resultant array, so that we can use the same scanning 

kernel twice in order to compute the integral image. Taking 

the transpose is the cheapest routine in our method, because 

we utilize the shared memory to provide coalescence, and 

apply padding to the shared memory in order to avoid bank 

conflicts, as suggested in [11]. We present the transpose 

kernel next, where we take BLOCK_DIM as 16. 

After transposing, we scan the rows of the transposed 

array to obtain the integral image. We launch a scan kernel 

with grid dimensions n͂seg×w, where n͂seg is the number of 

thread blocks, and w is the width of the image. We note that 

the resulting integral image is in transposed form, but this 

poses no difficulties since the pixel at position (x, y) can be 

accessed by the index (y+x∙h). 

 
 

 

V. EXPERIMENTS 

A. Single Precision Floating Point Computation 

A multiprocessor consists of eight single precision thread 

processors, two special function units, on-chip shared 

memory, an instruction unit, and a single double precision 

unit. Therefore, GPUs are optimized for single precision 

computations, and there is an order of magnitude difference 

in the theoretical performance bandwidth between single and 

double precision operations. Figure 4 compares the results 

obtained with the sequential algorithm running on the CPU 

and the single precision GPU implementation. In all of our 

results, we exclude the time spent for data transfer and report 

only the GPU computation times, which are obtained on an 

NVIDIA GeForce GTX 295 graphics card. We use a PC  
 

Figure 4: Performance comparison of single precision integral 

image computation on the CPU and the GPU. Results for [4] are 

replicated from their work 

 

CUDA Code: Transpose kernel for the GPU 
 

 

__global__ void transpose(float *input, float 

*output, int width, int height) 

{ 

 

 __shared__ float temp[BLOCK_DIM][BLOCK_DIM+1]; 

  

 int xIndex = blockIdx.x*BLOCK_DIM + threadIdx.x; 

 int yIndex = blockIdx.y*BLOCK_DIM + threadIdx.y; 

 

 if((xIndex < width) && (yIndex < height)) 

 { 

  int id_in = yIndex * width + xIndex; 

   temp[threadIdx.y][threadIdx.x] = input[id_in]; 

 } 

 

 __syncthreads(); 

 

 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x; 

 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y; 

 

 if((xIndex < height) && (yIndex < width)) 

 { 

 int id_out = yIndex * height + xIndex; 

 output[id_out] = temp[threadIdx.x][threadIdx.y]; 

 } 

 

} 

Figure 3: Scanning arrays of arbitrary size. 
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with 2.5 GHz CPU and 3GB memory. For a 4 megapixel 

input, our system works about 3 times faster than the 

proposed method in [4], which is implemented with the 

Brook language and runs on a ATI graphics card. 

 

B. Single Precision Vector Processing 

In addition to standard data types, CUDA also provides 

packed data structures to ease access to multi-dimensional 

inputs. The vector type formed by a bundle of four floating 

point numbers is called float4. Since the size of this 

structure is 16 bytes, it satisfies two important properties that 

increase the maximum memory bandwidth. First, the GPU is 

capable of reading 16-byte words from global memory into 

registers in a single instruction. Second, global memory 

bandwidth is used most efficiently when the memory 

accesses of the threads in a half-warp can be coalesced into a 

single memory transaction of 32, 64, or 128 bytes. In the 

case of float4 data, this results in only two 128 byte 

transactions per half-warp, given that the threads access the 

words in sequence. Therefore, it is possible to process four 

times more data with a smaller impact on the memory 

bandwidth. This point is illustrated in Figure 5. 

 

 

 

Figure 5: Comparing the GPU processing times of our float4 

implementation with four times the processing time of our float 

integral image. We are able to process four times more data using 

float4 vector type, with a smaller impact on the memory 

bandwidth.  

 

 

C. Double Precision Floating Point Computation 

As GPUs are optimized for single precision arithmetic, 

double precision implementation results in a lower 

performance as depicted in Figure 6. For large image sizes, 

this performance degradation may be traded-off for higher 

accuracy computation. We note that our results are about 4 

times faster than the implementation by [4] for a 2048×2048 

size image. 

 

 

 

Figure 6: Performance comparison of double and single precision 

GPU implementations. Results for [4] are replicated from their 

work.  

  

We finalize our discussion by noting that even though 

using double precision arithmetic reduces the GPU 

performance, it is still 9 times faster than the double 

precision CPU implementation, for a 4 megapixel input 

(Figure 7). As the input size gets smaller, we see that the 

performance difference is reduced. This is mainly because 

the CPU implementation makes use of its large cache and it 

is not possible to utilize all GPU processors at small image 

sizes.    

 

 

Figure 7: Integral image computation times with double precision 

on the CPU and the GPU. We report a speed up by a factor of 9 

with the GPU implementation. 

 

D. Kernel Occupancy and Performance 

Maximum occupancy per kernel is a way of measuring 

CUDA code performance by quantifying how efficiently a 

multiprocessor is being used. Occupancy is defined as the 

ratio of the active warps to the maximum number of warps 

supported on a multiprocessor and determined by the shared 

memory and register usage and the thread block 

configuration of a kernel. 
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Kernel Occupancy Mem. Throughput Shared Mem. Registers Threads/Block 

Scan array 100 % 17 GB/s 2224  11 256 

Increment block 100 % 50 GB/s 48 5 256 

Transpose 100 % 49 GB/s 1120 8 16×16 

 
Table 1: Shared memory and register usage, as well as the thread block configuration affects the kernel occupancies. The kernels in 

our implementation work at full occupancy, which is an indicator of good performance. The overall memory throughput reflects 

how fast the kernels access data from the global memory.  

Table 1 presents occupancies as well as the processing 

times related with each kernel in our method. We note that 

all the kernels involved in integral image computation works 

with full occupancy. 

 

VI. CONCLUSIONS 

In this work, we have presented data parallel algorithms 

for integral image computation. Given that many computer 

vision algorithms employ this data structure for rapid feature 

evaluation, our approach can be used as a subroutine to 

increase the performance of such systems. This technique 

can be easily extended to compute integral histograms, as 

they depend on the same principles.  

For high resolution input images, our method provides 

close to an order of magnitude speed up relative to its 

sequential counterpart, for both single precision and double 

precision arithmetic. By employing vector type data 

structures, it is possible to push this performance boost even 

further. Thanks to the flexible CUDA programming model, 

our method extends to future generation GPUs, as well as 

scaling to multi-GPU systems.   
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