



Abstract—We present an integral image algorithm that can

run in real-time on a Graphics Processing Unit (GPU). Our

system exploits the parallelisms in computation via the NIVIDA

CUDA programming model, which is a software platform for

solving non-graphics problems in a massively parallel high-

performance fashion. This implementation makes use of the

work-efficient scan algorithm that is explicated in [5]. Treating

the rows and the columns of the target image as independent

input arrays for the scan algorithm, our method manages to

expose a second level of parallelism in the problem. We

compare the performance of the parallel approach running on

the GPU with the sequential CPU implementation across a

range of image sizes and report a speed up by a factor of 8 for a

4 megapixel input. We further investigate the impact of using

packed vector type data on the performance, as well as the

effect of double precision arithmetic on the GPU.

I. INTRODUCTION

he use of integral images for rapid feature evaluation

became popular with the seminal face detection

algorithm proposed by Viola and Jones [1]. The features

employed in the detector are reminiscent of Haar basis

functions and form an overcomplete set for image

representation. Obtaining the proposed features involves

computing sums of pixel values over rectangular regions.

Since these sums can be calculated by using only 4 array

references with the integral image, evaluating this set of

Haar-like features is very cheap, once the integral image is

computed.

 An alternative motivation for the integral image arises

from the signal processing literature. In the “boxlets” work

of Simard et al. [12], authors point out that in the case of

linear operators (e.g. the inner product f ∙ h), any invertible

linear operation can be applied to either f or h if the inverse

operation is applied to the other operand. From this point of

view, the integral image can be expressed as a dot product, i

∙ r, where i is the input image and r is the box car function

that takes the value 1 inside the rectangle of interest and 0

outside. This summation can be written as

Final manuscript received May 15, 2010.

B. Bilgic is with the Department of Electrical Engineering and

Computer Science, MIT, Cambridge, MA 02139, USA (e-mail:

berkin@mit.edu).

B.K.P. Horn is with the Department of Electrical Engineering and

Computer Science and CSAIL, MIT, Cambridge, MA 02139, USA (e-mail:

bkph@csail.mit.edu).

I. Masaki is with the Department of Electrical Engineering and

Computer Science and MTL, MIT, Cambridge, MA 02139, USA (e-mail:

IMasaki@aol.com).

  riri  

where the double integral of the image, obtained by

summation first along the rows and then along the columns,

is in fact the integral image and the second derivative of the

boxcar function gives rise to four delta functions at the

corners of the image. This is exactly the same idea as using 4

array references to compute the integral image.

 This integral image formulation has allowed the Viola-

Jones face detector to run in real-time, and influenced the

development of several other computer vision algorithms.

Among these, [2, 8] apply the integral image to histograms,

thus extending its usage from Haar-like wavelets to more

complex features such as the Histograms of Oriented

Gradients [9] descriptors.

 Even though the systems that incorporate the integral

image approach as an intermediate component have been

reported [2, 3, 7] to have training times in the order of days,

they experience significant performance benefits. It is

possible to build on this boost in speed by realizing such

methods on general purpose GPUs, and obtain real-time

performances [3].

 A sequential implementation for integral image

computation would require 2∙w∙h operations for an image of

size w×h. As the size gets larger, this cost represents a

significant overhead for the overall algorithm. Messom and

Barczak [4] adopt a parallel processing approach to reduce

this overhead. Their realization is based on the Brook stream

processing language and demonstrates that employing the

GPGPU paradigm results in significant performance

benefits.

 The term GPGPU refers to using graphics processing units

to accelerate non-graphics problems. The many-core

architecture of the new generation GPUs enables them to

execute thousands of threads in parallel. These threads are

managed with zero scheduling overhead and are lightweight

compared to CPU threads. To fully utilize the great

computational horsepower of the GPUs, thousands of threads

need to be launched within each parallel routine. The

potential benefit of employing a graphics card can be

quantified by the theoretical floating point performance of

the device. Whereas modern CPUs have peak performances

on the order of 10 GFLOPs, commercial GPUs can exceed

the 1 TFLOP limit. Since the integral image formulation is a

compute-intensive, parallelizable task, we present a GPU

implementation using the widely adopted NVIDIA CUDA

programming model in this work.

 In the rest of this paper, we provide the sequential integral

Efficient Integral Image Computation on the GPU

Berkin Bilgic, Berthold K.P. Horn, Ichiro Masaki

T

2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA
June 21-24, 2010

WeB1.2

U.S. Government work not protected by U. 528

image algorithm, give a brief background on the CUDA

platform and detail our parallel algorithms. We conclude by

commenting on the effect of using double precision and

vector type data, and compare the performance with our

sequential implementation.

II. THE SEQUENTIAL INTEGRAL IMAGE ALGORITHM

For an image of size w×h, we form the integral image on

the CPU using the following algorithm,

Algorithm: Sequential integral image formulation

I : input image with size w×h

Iint : integral image with size w×h

Array elements are accessed in row major order.

for x = 0 to w−1 do

 Iint [x] ← 0

for y = 1 to h−1 do

 Iint [y∙w] ← 0

 s ← 0

 for x = 0 to w−1 do

 s ← s + I [x + (y−1)∙w]

 Iint [x + y∙w + 1] ← s + Iint [x + (y−1)∙w + 1]

We note that the output of this algorithm is an exclusive

integral image, which is padded on the first row and the

column by zeros and has the same size as the input. For

instance, the image



















1314

1123

1312

I produces



















12850

6320

0000

intI

III. NVIDIA CUDA PROGRAMMING MODEL

CUDA is the computing platform in NVIDIA graphics

processing units that enables the developers to code parallel

algorithms thorough industry standard languages. The

CUDA programming model acts as a software platform for

massively parallel high-performance computing by providing

a direct, general-purpose C language interface „C for CUDA‟

to the programmable multiprocessors on the GPUs.

According to this model, parallel portions of an application

are executed as kernels. CUDA allows these kernels to be

executed multiple times by multiple threads simultaneously.

A typical application would use thousands of threads to

achieve efficiency.

 At the core of the model lie three abstractions – a

hierarchical ordering of thread groups, on-chip shared

memories, and a barrier instruction to synchronize the

threads active on a GPU multiprocessor. In order to scale to

future generation graphics processors, multiple threads are

grouped in thread blocks and multiple blocks reside in a grid

that has user specified dimensions. Thread blocks may

contain up to 512 threads, and the threads inside a block can

communicate via low latency, on-chip shared memory. To

prevent read-after-write, write-after-read, and write-after-

write hazards, __syncthreads() command can be used to

coordinate communication between the threads of the same

block. A group of 32 threads that are executed physically

simultaneously on a multiprocessor is called a warp.

 There are six different memory types in the CUDA model

that provide flexibility to the programmer. Apart from the

shared memory (16kB) that is visible to all threads within a

block, each thread has access to a private local memory and

registers. Additionally, there are three types of off-chip

memory that all threads may reach. The global memory

(1792MB) has high latency and is not cached. The constant

memory (64kB) is cached and particularly useful if all

threads are accessing the same address. The texture memory

is also cached and optimized for spatial locality, so threads

of the same warp that read texture addresses that are close

together will achieve best performance. Textures can be

bound to either linear memory or CUDA arrays; hence their

maximum sizes depend on the particular data structure they

are used with. Textures also provide hardware interpolation,

which has very small performance cost.

 The fact that shared memory resides on the

multiprocessors where computations are performed whereas

the global memory types are off-chip is reflected by the vast

difference in their access speeds. It takes about 400 to 600

clock cycles to issue a memory instruction for the global

memory, but the same operation occurs about 150 times

faster in the shared memory. Therefore, if the same addresses

need to be accessed multiple times, it would be beneficial to

reach them via the shared memory.

IV. PARALLEL ALGORITHMS FOR INTEGRAL IMAGE

COMPUTATION

We start by explaining the parallel prefix sum (scan)

algorithm [5] which constitutes the foundation of our

method. Next, we relate how this algorithm can be used as a

building block by applying it first on the rows of the image,

then taking the transpose, and again applying parallel scan

on the rows of the transposed array to obtain the integral

image.

A. Parallel prefix sum (scan)

The all-prefix-sums operation takes a binary associative

operator ⊕, and an array of n elements

],...,,[110 naaa

and returns

)]...(),...,(,[110100  naaaaaa

If we let the operator ⊕ be summation, we obtain the

inclusive scan operation. If we shift the resulting array to the

right by one element and insert the identity in the beginning,

we end up with the exclusive scan operation, which returns

)]...(),...,(,,0[210100  naaaaaa

In the rest of this paper, we will be focusing on the exclusive

version of the operation, and simply refer to it as scan.

529

 For an input array with size n, the scan algorithm has

computational complexity of O(n), and it consists of two

phases: the reduce phase (or the up-sweep phase) and the

down-sweep phase. We can visualize the reduce phase as

building a binary tree (Figure 1), at each level reducing the

number of nodes by half, and making one addition per node.

Since the operations are performed in place using shared

memory, the tree we build is not an actual data structure, but

helps explaining the algorithm.

 In the down-sweep phase, we traverse the tree from the

root to the leaves, and use the partial sums we computed in

the reduce phase to obtain the scanned array. We note that

the last element is set to zero in the beginning and it

propagates to reach the beginning of the array, thus resulting

in an exclusive computation (Figure 2).

The overall cost of these phases is 2(n−1) summations and

(n−1) swaps, which is in O(n) time, same as the sequential

algorithm. Following [5], we provide the CUDA kernel that

implements the scan algorithm below:

CUDA Code: Scan kernel for the GPU

__global__ void scan(float *input, float

*output, int n)

{

 extern __shared__ float temp[];

 int tdx = threadIdx.x; int offset = 1;

 temp[2*tdx] = input[2*tdx];

 temp[2*tdx+1] = input[2*tdx+1];

 for(int d = n>>1; d > 0; d >>= 1)

 {

 __syncthreads();

 if(tdx < d)
 {

 int ai = offset*(2*tdx+1)-1;

 int bi = offset*(2*tdx+2)-1;

 temp[bi] += temp[ai];

 }

 offset *= 2;

 }

 if(tdx == 0) temp[n - 1] = 0;

 for(int d = 1; d < n; d *= 2)

 {

 offset >>= 1; __syncthreads();

 if(tdx < d)

 {

 int ai = offset*(2*tdx+1)-1;

 int bi = offset*(2*tdx+2)-1;

 float t = temp[ai];

 temp[ai] = temp[bi];

 temp[bi] += t;

 }

 }

 __syncthreads();

 output[2*tdx] = temp[2*tdx];

 output[2*tdx+1] = temp[2*tdx+1];

}

Even though this kernel is work efficient, it suffers from

bank conflicts in the shared memory. In our implementation,

we try to avoid these conflicts by adding a variable amount

of padding to each shared memory index we use, as

suggested in [5]. The amount we add is equal to the value of

the index divided by the number of memory banks, which is

equal to 16 for our graphics card.

As it is, this kernel is unable to scan arrays with sizes

larger than 1024, since the maximum number of threads per

block is 512 and a single thread loads and processes two data

elements. Influenced by [10], we solve this problem by

employing several thread blocks and making them

responsible for a certain part of the input. If we let the input

array contain n elements and if each block processes b of the

entries, we need to launch n/b thread blocks and b/2 threads

in each block. With the usual scan algorithm, each thread

block scans its part of the array, but before zeroing the last

Figure 2: The down-sweep phase. At each level of the tree,

there are as many swapping operations as summations.

zero

+

+ +

 x0 x0 + x1 x2 Σ(x0…x3)

 x0 x0 + x1 x2 0

 x0 0 x2 x0 + x1

 0 x0 x0 + x1 Σ(x0…x2)

(a)

+ +

+

(b)

x0 x1 x2 x3

root

+ +

+

Figure 1: (a) The reduce phase applied on an array of four

elements. (b) Binary tree view of the algorithm. Scanning is

performed from the leaves to the root, where the root contains

the sum of all four elements.

 x0 x1 x2 x3

 x0 x0 + x1 x2 x2 + x3

 x0 x0 + x1 x2 Σ(x0…x3)

530

element that contains the sum of all the elements in that

segment, we register it to an auxiliary array Isum. We then

scan this array in place and add Isum[i] to all elements of the

segment that (i+1)
st
 thread block is responsible for. Figure 3

tries to further illustrate this. To handle inputs with a size

that is not a power of two, we pad the last segment of the

array before scanning.

B. Scanning the image rows

We treat each row of the image as an independent array

and scan the rows in parallel. In our implementation, each

row is divided into segments of 512 pixels, and each segment

is processed by a thread block consisting of 256 threads.

Hence, we launch a scan kernel using a grid with dimensions

nseg×h, where nseg is the number of segments in each row, and

h is the height of the image.

C. Computing the Transpose

After scanning the rows of the image, we take the transpose

of the resultant array, so that we can use the same scanning

kernel twice in order to compute the integral image. Taking

the transpose is the cheapest routine in our method, because

we utilize the shared memory to provide coalescence, and

apply padding to the shared memory in order to avoid bank

conflicts, as suggested in [11]. We present the transpose

kernel next, where we take BLOCK_DIM as 16.

After transposing, we scan the rows of the transposed

array to obtain the integral image. We launch a scan kernel

with grid dimensions n͂seg×w, where n͂seg is the number of

thread blocks, and w is the width of the image. We note that

the resulting integral image is in transposed form, but this

poses no difficulties since the pixel at position (x, y) can be

accessed by the index (y+x∙h).

V. EXPERIMENTS

A. Single Precision Floating Point Computation

A multiprocessor consists of eight single precision thread

processors, two special function units, on-chip shared

memory, an instruction unit, and a single double precision

unit. Therefore, GPUs are optimized for single precision

computations, and there is an order of magnitude difference

in the theoretical performance bandwidth between single and

double precision operations. Figure 4 compares the results

obtained with the sequential algorithm running on the CPU

and the single precision GPU implementation. In all of our

results, we exclude the time spent for data transfer and report

only the GPU computation times, which are obtained on an

NVIDIA GeForce GTX 295 graphics card. We use a PC

Figure 4: Performance comparison of single precision integral

image computation on the CPU and the GPU. Results for [4] are

replicated from their work

CUDA Code: Transpose kernel for the GPU

__global__ void transpose(float *input, float

*output, int width, int height)

{

 __shared__ float temp[BLOCK_DIM][BLOCK_DIM+1];

 int xIndex = blockIdx.x*BLOCK_DIM + threadIdx.x;

 int yIndex = blockIdx.y*BLOCK_DIM + threadIdx.y;

 if((xIndex < width) && (yIndex < height))

 {

 int id_in = yIndex * width + xIndex;

 temp[threadIdx.y][threadIdx.x] = input[id_in];

 }

 __syncthreads();

 xIndex = blockIdx.y * BLOCK_DIM + threadIdx.x;

 yIndex = blockIdx.x * BLOCK_DIM + threadIdx.y;

 if((xIndex < height) && (yIndex < width))

 {

 int id_out = yIndex * height + xIndex;

 output[id_out] = temp[threadIdx.x][threadIdx.y];

 }

}

Figure 3: Scanning arrays of arbitrary size.

Input array

Store sums to aux. array Isum

Scan blocks

Scan Isum

+ + + Add Isum[i] to all

elements in (i+1)st

block

Scan

 Block1 Block 2 Block 3 Block4

 Block1 Block 2 Block 3 Block4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

5

10

15

20

25

30

35

40

45

Image Size (pixels)

In
te

g
ra

l
Im

a
g
e
 T

im
e
 (

m
s
)

CPU and GPU Integral Image Times with Single Precision

GPU of [4]

Our GPU

Our CPU

531

with 2.5 GHz CPU and 3GB memory. For a 4 megapixel

input, our system works about 3 times faster than the

proposed method in [4], which is implemented with the

Brook language and runs on a ATI graphics card.

B. Single Precision Vector Processing

In addition to standard data types, CUDA also provides

packed data structures to ease access to multi-dimensional

inputs. The vector type formed by a bundle of four floating

point numbers is called float4. Since the size of this

structure is 16 bytes, it satisfies two important properties that

increase the maximum memory bandwidth. First, the GPU is

capable of reading 16-byte words from global memory into

registers in a single instruction. Second, global memory

bandwidth is used most efficiently when the memory

accesses of the threads in a half-warp can be coalesced into a

single memory transaction of 32, 64, or 128 bytes. In the

case of float4 data, this results in only two 128 byte

transactions per half-warp, given that the threads access the

words in sequence. Therefore, it is possible to process four

times more data with a smaller impact on the memory

bandwidth. This point is illustrated in Figure 5.

Figure 5: Comparing the GPU processing times of our float4

implementation with four times the processing time of our float

integral image. We are able to process four times more data using

float4 vector type, with a smaller impact on the memory

bandwidth.

C. Double Precision Floating Point Computation

As GPUs are optimized for single precision arithmetic,

double precision implementation results in a lower

performance as depicted in Figure 6. For large image sizes,

this performance degradation may be traded-off for higher

accuracy computation. We note that our results are about 4

times faster than the implementation by [4] for a 2048×2048

size image.

Figure 6: Performance comparison of double and single precision

GPU implementations. Results for [4] are replicated from their

work.

We finalize our discussion by noting that even though

using double precision arithmetic reduces the GPU

performance, it is still 9 times faster than the double

precision CPU implementation, for a 4 megapixel input

(Figure 7). As the input size gets smaller, we see that the

performance difference is reduced. This is mainly because

the CPU implementation makes use of its large cache and it

is not possible to utilize all GPU processors at small image

sizes.

Figure 7: Integral image computation times with double precision

on the CPU and the GPU. We report a speed up by a factor of 9

with the GPU implementation.

D. Kernel Occupancy and Performance

Maximum occupancy per kernel is a way of measuring

CUDA code performance by quantifying how efficiently a

multiprocessor is being used. Occupancy is defined as the

ratio of the active warps to the maximum number of warps

supported on a multiprocessor and determined by the shared

memory and register usage and the thread block

configuration of a kernel.

0 1 2 3 4 4.5

x 10
6

0

5

10

15

20

25

Image Size (pixels)

In
te

g
ra

l
Im

a
g
e
 T

im
e
 (

m
s
)

Float4 and Float Integral Image Times

Our Float4

Our Float

4x Our Float

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

10

20

30

40

50

60

70

80

Image Size (pixels)

In
te

g
ra

l
Im

a
g
e
 T

im
e
 (

m
s
)

CPU and GPU Integral Image Times with Double Precision

Our CPU, double

Our GPU, double

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

5

10

15

20

25

30

35

Image Size (pixels)

In
te

g
ra

l
Im

a
g
e
 T

im
e
 (

m
s
)

GPU float and double Integral Image Times

Our double

Double of [4]

Our float

532

Kernel Occupancy Mem. Throughput Shared Mem. Registers Threads/Block

Scan array 100 % 17 GB/s 2224 11 256

Increment block 100 % 50 GB/s 48 5 256

Transpose 100 % 49 GB/s 1120 8 16×16

Table 1: Shared memory and register usage, as well as the thread block configuration affects the kernel occupancies. The kernels in

our implementation work at full occupancy, which is an indicator of good performance. The overall memory throughput reflects

how fast the kernels access data from the global memory.

Table 1 presents occupancies as well as the processing

times related with each kernel in our method. We note that

all the kernels involved in integral image computation works

with full occupancy.

VI. CONCLUSIONS

In this work, we have presented data parallel algorithms

for integral image computation. Given that many computer

vision algorithms employ this data structure for rapid feature

evaluation, our approach can be used as a subroutine to

increase the performance of such systems. This technique

can be easily extended to compute integral histograms, as

they depend on the same principles.

For high resolution input images, our method provides

close to an order of magnitude speed up relative to its

sequential counterpart, for both single precision and double

precision arithmetic. By employing vector type data

structures, it is possible to push this performance boost even

further. Thanks to the flexible CUDA programming model,

our method extends to future generation GPUs, as well as

scaling to multi-GPU systems.

REFERENCES

[1] P. Viola and M. Jones. Rapid Object Detection Using a Boosted

Cascade of Simple Features. Conference on Computer Vision and

Pattern Recognition (CVPR), 2001

[2] Q. Zhu, S. Avidan, M. Yeh, and K. Cheng. Fast Human Detection

using a Cascade of Histograms of Oriented Gradients. Conference on

Computer Vision and Pattern Recognition (CVPR), 2006

[3] B. Bilgic, B.K.P. Horn, I. Masaki. Fast Human Detection with

Cascaded Ensembles on the GPU. Submitted to IEEE Intelligent

Vehicles Symposium, 2010

[4] C.H. Messom, A.L. Barczak. High Precision GPU based Integral

Images for Moment Invariant Image Processing Systems. Electronics

New Zealand Conference (ENZCON'08), 2008

[5] M. Harris. Parallel Prefix Sum (Scan) with CUDA. NVIDIA CUDA

SDK code samples

[6] G.E. Blelloch. Prefix Sums and Their Applications. John H. Reif

(Ed.), Synthesis of Parallel Algorithms, Morgan Kaufmann, 1990.

[7] P. Viola, M. Jones and D. Snow. Detecting Pedestrians Using Patterns

of Motion and Appearance. International Conference on Computer

Vision (ICCV), 2003

[8] F. Porikli. Integral histogram: A Fast Way to Extract Histograms in

Cartesian Spaces. Conference on Computer Vision and Pattern

Recognition (CVPR), 2005

[9] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human

Detection. Conference on Computer Vision and Pattern Recognition

(CVPR), 2005

[10] M. Harris. Scan of Large Arrays. NVIDIA CUDA SDK code samples

[11] NVIDIA: NVIDIA CUDA SDK code samples, Transpose

[12] P.Y. Simard, L. Bottou, P. Haffner, and Y.L. Cun. Boxlets: a Fast

Convolution Algorithm for Signal Processing and Neural Networks.

In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural

Information Processing Systems, volume 11, pages 571–577, 1999

533

