



Abstract— We investigate a fast pedestrian localization

framework that integrates the cascade-of-rejectors approach

with the Histograms of Oriented Gradients (HoG) features on a

data parallel architecture. The salient features of humans are

captured by HoG blocks of variable sizes and locations which

are chosen by the AdaBoost algorithm from a large set of

possible blocks. We use the integral image representation for

histogram computation and a rejection cascade in a sliding-

windows manner, both of which can be implemented in a data

parallel fashion. Utilizing the NVIDIA CUDA framework to

realize this method on a Graphics Processing Unit (GPU), we

report a speed up by a factor of 13 over our CPU

implementation. For a 1280×960 image our parallel technique

attains a processing speed of 2.5 to 8 frames per second

depending on the image scanning density, which is similar to the

recent GPU implementation of the original HoG algorithm in

[3].

I. INTRODUCTION

etecting humans in images is a challenging task because

of the variability in clothing and illumination

conditions, and the wide range of poses that people can

adopt. To discriminate the human shape clearly, Dalal and

Triggs [1] proposed a gradient based, robust feature set that

yielded excellent detection results. This method computes

locally normalized gradient orientation histograms over

blocks of size 16×16 to represent a detection window. When

the block histograms within the window are concatenated,

the resulting feature vector is powerful enough to classify

humans with 88% detection rate at 10
-4

 false positives per

window (FPPW) using a linear SVM. The detection window

slides over the image in all possible image scales, hence this

is computationally expensive, being able to run at 1 FPS for

a 320×240 image with a sparse scanning methodology.

To speed up the method, Zhu et al. [2] combined the

cascade-of-rejectors approach [4] that has been the

benchmark method in face recognition with the HoG

features. This approach is based on early rejection of

detection windows which clearly do not contain a person by

evaluating a small number of features, and focusing the

Final manuscript received May 15, 2010.

B. Bilgic is with the Department of Electrical Engineering and

Computer Science, MIT, Cambridge, MA 02139, USA (e-mail:

berkin@mit.edu).

B.K.P. Horn is with the Department of Electrical Engineering and

Computer Science and CSAIL, MIT, Cambridge, MA 02139, USA (e-mail:

bkph@csail.mit.edu).

I. Masaki is with the Department of Electrical Engineering and

Computer Science and MTL, MIT, Cambridge, MA 02139, USA (e-mail:

IMasaki@aol.com).

computational resources on windows that are harder to

classify. Since the Dalal-Triggs algorithm employs small,

fixed-size histogram blocks defined in a dense grid, it is not

possible to capture the “big picture” to make fast rejections

with such blocks in the early stages of the cascade. To find

out which combinations of blocks can be used together for

summarizing a detection window in the early stages and for

providing detail in the later stages, Zhu et al. proposed to

choose the most informative blocks out of a large feature

pool by using AdaBoost. The selected block features have

the most suitable size, location and aspect ratio to

complement the other features within each stage.

By this formulation, the method was reported to yield 4 to

30 FPS performance on a 320×240 image, depending on the

scanning density. Although not reported, it is conceivable

that this would correspond to about 0.3 to 2 FPS for a

1280×960 image, not being able to run in real-time.

In our work, we aim to show that by using efficient

parallel algorithms with a technology called general-purpose

computation on graphics processing units (GPGPU), we can

speed up the cascade detector by a factor of 13 relative to

our CPU implementation to achieve a near real-time

performance of 8 FPS for a 1280×960 image.

In the rest of this paper, we give a brief background

information human detection and GPGPU, describe the

cascade-of-rejectors algorithm, and give details about our

CPU and GPU implementations. We finish with

experimental results.

I. BACKGROUND

There is an extensive literature on human detection, and

[5] gives an elegant survey on this topic. Papageorgiou et al.

[6] presents a detector that combines Haar wavelet features

with a polynomial SVM classifier. Gavrila and Philomin [7]

use the chamfer distance of edge images, and match them

with a learned exemplar set. Viola et al. [8] use AdaBoost to

train a chain of rejection rules that employ Haar-like

wavelets and spatial-temporal differences. Dalal and Triggs

[1] use a single window approach with a dense HoG

descriptor and a linear SVM for classification. Tuzel et al.

[14] demonstrate superior results over the Dalal-Triggs

algorithm by using covariance matrices as object descriptors.

Due its simplicity and high descriptive power, several

authors worked on the Dalal-Triggs algorithm to make it

feasible for real time detection. Among these, Wojek et al.

[3] and Zhang et al. [9] suggest using the GPGPU

technology for implementation. In [3], a speed up by a factor

of 34 over the original CPU implementation by [1] is

Fast Human Detection with Cascaded Ensembles on the GPU

Berkin Bilgic, Berthold K.P. Horn, and Ichiro Masaki

D

2010 IEEE Intelligent Vehicles Symposium
University of California, San Diego, CA, USA
June 21-24, 2010

TuE1.13

U.S. Government work not protected by U. 325

reported, and this corresponds to a processing time of 385ms

per 1280×960 image. Similarly, the work in [9] achieves a

more than 10 times speed up over the original CPU code of

[1]. Zhu et al. [2] suggest formulating the HoG algorithm as

a rejection cascade and demonstrate 30× speed up over the

original algorithm for 320×240 images, both working on the

CPU.

II. THE DALAL-TRIGGS ALGORITHM

The method starts by applying square root gamma

correction to the input RGB image. Then gradients are

computed for all three color channels using centered kernels

[-1, 0, 1] in horizontal and vertical directions. For each pixel,

the gradient magnitude is taken from the color channel with

the largest gradient norm. Next, gradient orientations are

computed and discretized into 9 orientation bins, lying

between 0° and 180°. A weighted vote for an edge

orientation histogram is calculated for a given pixel, and the

votes are accumulated into orientation bins over local spatial

regions called cells. To reduce the aliasing, the gradient

votes are trilinearly interpolated between neighboring bin

centers in orientation and space. Cells are taken to be of size

8×8 pixels, and grids of 2×2 cells are grouped in blocks.

Since each cell is represented by 9 histogram bins, a

histogram block then has a 36 dimensional feature vector. To

increase robustness, each block is normalized with L2-Hys

norm; L2-norm followed by clipping the maximum element

in the vector to 0.2. Within a detection window of size

64×128 a total of 105 blocks can be defined, when

overlapping by 8 pixels in both dimensions is allowed. This

way, each window is represented by a 105×36 = 3780

dimensional feature vector, which is used to train a linear

SVM classifier. The detection window scans over the whole

image with vertical and horizontal strides of 8 pixels, then

the image is downscaled with a ratio of 1.05. This process

continues until all scales are accounted for. Finally, a mode

estimator based on the mean shift algorithm fuses multiple

detections in space and scale to return bounding boxes

corresponding to detections. Given a 1280×960 image, all

these correspond to evaluating about 150000 detection

windows, which takes many seconds to run on a CPU.

III. THE CASCADE-OF-REJECTORS ALGORITHM

The success of the Dalal-Triggs algorithm depends on two

key factors: a dense window descriptor based on small

histogram blocks and local block normalization that

emphasizes their relative behavior. Firstly, even though this

dense formulization gives an excellent description power, it

also results in redundant computations for image regions that

clearly do not resemble a human. Using a coarser descriptor

would prune these computations, and enable us to focus our

resources on detection windows that are harder to classify.

Secondly, as noted in [2], small histogram blocks of size

16×16 might miss the “big picture”, being unable to

correspond to a semantic part of the human body. These

mappings might be recovered if blocks of larger sizes and

different aspect ratios could be employed.

To address these points, Zhu et al. [2] proposed to form an

attentional cascade consisting of stages that get progressively

more complex (Figure 1). By using HoG blocks of different

sizes, locations and aspect ratios as features, it is possible to

run the AdaBoost algorithm to determine which features to

evaluate in each stage of the cascade. Thus, the complete

detector is formed by a cascade of ensemble classifiers, each

of which uses base learners that are linear SVMs based on

the chosen HoG block features. In our algorithm our feature

pool contains 5029 HoG blocks, as opposed to the 105 fixed

size blocks that define a window in the Dalal-Triggs

algorithm. We also note that the first stages of the cascade

employ large blocks that attempt to capture the “big picture”

and the later stages include smaller ones to provide more

detail.

We also note that this rejection cascade was first

introduced in Viola & Jones’ seminal face detection work

[4], where they suggested using Haar-like wavelets as

features. However, this methodology was reported to be

unable to perform equally well in human detection,

especially in a cluttered, complex dataset [5, 2].

Another important contribution in [4] was the introduction

of the integral image for rapid evaluation of features.

Paralleling [2], we also use the integral image idea to

compute the orientation histogram of the image.

A. Integral Histograms of Oriented Gradients

By setting the horizontal and vertical window strides to 8

pixels, which is equal to the strides of histogram blocks

within the detection windows, the Dalal-Triggs algorithm

eliminates the redundant computations. Computing and

caching the block histograms over the whole image and

sharing them among the detection windows makes it possible

to work around the problem of recomputing data for

overlapping windows. However, in the case of the cascade

algorithm, it is not possible to cache the histograms and

share them among the windows since the relative locations of

blocks have no order and a “block stride” cannot be defined.

This leads us to using the integral image idea.

Figure 1: Cascade-of-rejectors. Detection window is passed to

the stage 1 which decides true or false. A false determination

stops further computation, and the window is classified to

contain non-pedestrian. A true determination triggers the

computation at the following stage. Only if the window passes

through all the stages, it is classified to contain a person.

detection

window

stage 1 stage 2

false false

true true
. . .

false false

stage n

false

false

true
true

326

The integral image, introduced in [4] and detailed in

Figure 2, enables us to compute the sum of the elements

within a rectangular region by using 4 image access

operations. As in [2], we discretize each pixel’s gradient

orientation into 9 bins, then compute and store an integral

image for each histogram bin. The HoG for any rectangular

region then can be computed by 9 × 4 = 36 image access

operations, 4 for each of the 9 bins.

This formulation differs from the Dalal-Triggs algorithm

because of the omissions of the Gaussian mask used for

weighting the votes of histogram blocks, and the trilinear

interpolation (in space and orientation) used for

histogramming.

B. Histogram Cells and Blocks

For a 64×128 detection window, we consider block sizes

ranging from 12×12 to 64×128, with the constraint that the

block width and height must be divisible by two. Also, we

consider block aspect ratios of (1 : 1), (1 : 2) and (2 : 1).

Depending on the block size, we choose a step size which

can take values {4, 6, 8}. This way, we can define a feature

pool of 5029 distinct blocks. Each of these blocks is further

divided into a grid of 2×2 histogram cells, over which the

orientation histograms are computed. Each cell gives rise to

a 9 dimensional histogram vector, and these are concatenated

to form a 36 dimensional block histogram. Computing a

single block histogram thus requires 9 × 9 = 81 integral

histogram accesses (Figure 3).

Choosing the histogram blocks out of a large pool of

features gives us the power to represent semantic parts in the

human body in an explicit way (some parts may correspond

to torso, legs, etc.). By placing these features in a cascade

that progressively gets more complex, we also avoid making

unnecessary computations for objects that do not resemble a

person, since the blocks in the early stages are usually large,

and they capture the “big picture” effortlessly. In the original

Dalal-Triggs algorithm, we make the same amount of

computation for each window, regardless of the complexity

of the classification task we are trying to solve.

C. Training the Cascade with AdaBoost

Paralleling [2], we use 36 dimensional histogram blocks as

base learners in constructing the cascade classifier. These

learners are linear SVMs trained on the positive and negative

training examples. Each stage of the cascade is a strong

classifier formulated as an ensemble of these base learners,

where si (.) is the strong classifier (ensemble) at stage i, fit (.)

is the t
th

 base learner of this stage with voting weight αit, ni is

the number of the base learners in this stage, and Ti is the

detection threshold. Each base learner has the form

and the parameters θ and θ0 are learned with our modified

version of the SVM package SVMLight [10].

Since there are more than 5000 possible features in our

pool to choose from, we randomly sample 125 blocks at each

round of the AdaBoost algorithm and train linear SVMs. As

noted in [2], choosing the best feature from about 59 random

samples will guarantee nearly as good performance as if we

used all the features. By settling for 125, we substantially

decrease the training time meanwhile keeping feature quality

reasonably high.

For all stages, we use the 2416 positive images of size

64×128 in the INRIA database [11]. For the first stage, we

randomly sample 2416 negative windows of size 64×128

from the 1654 full-size (≥ 320×240) negative images from

INRIA. Then, each next stage in the cascade uses the false

positives obtained by running the current cascade classifier

over these full-size negative images as the negative training

Figure 2: The value of the integral image Iint at point (x, y) is the

sum of all the pixels above and to the left in the input image I;






yjxi

jiIyxI

,

int),(),(

(x, y)





 


otherwise

xif
xf

T

,0

0,1
)(0

Figure 3: Computing the block histogram for a block with size

W×H. Using the ith integral histogram, it is possible to compute

the ith elements of the cell histograms using 4 image accesses.

For instance, ith element of cell 1’s orientation histogram is

computed as hi[5] + hi[1] − hi[2] − hi[4]. Overall, we need 9

accesses for the ith bin, and 81 for all 9 bins.

hi[7] hi[8] hi[9]

hi[4] hi[5] hi[6]

hi[1] hi[2] hi[3]

Cell 1 Cell 2

Cell 3 Cell 4

H

W










 


otherwise

Txfif
xs

in

t

iitit
i

,0

)(,1
)(

1



327

Acquire image

Downscale image

Compute gradient

magnitude and orientations

ma
Compute integral histograms

Obtain block histograms

Evaluate cascade stages

Non-maxima suppression

Display results

Cascaded Detector on CPU

Figure 4: Steps of localization using the cascaded HoG detector

on the CPU

set. We randomly subsample these false positives since they

exceed 2416. Because each new stage is forced to classify

examples that the current cascade fails to classify, stages

tend to contain progressively more features, hence they

become more complex.

Algorithm: Training the cascade with AdaBoost

User selects values for fmax, the maximum acceptable

false positive rate per stage, dmin, the minimum

acceptable detection rate per stage and Ftarget, target

overall false positive rate.

Pos: set of positive samples (INRIA training positives)

Neg: set of negative samples (sampled from INRIA

training full-size negatives)

initialization: i = 0, Di = 1.0, Fi = 1.0

while Fi > Ftarget

 i = i + 1, fi = 1.0

 while fi > fmax

 Train 125 randomly sampled linear SVMs

using Pos and Neg

 Add the best SVM into the ensemble with the

appropriate vote determined by AdaBoost

 Update weights of the examples in AdaBoost

manner

 Evaluate Pos and Neg with the current

ensemble

 Decrease the threshold Ti until dmin holds

 Compute fi under this threshold

 Fi+1 = Fi × fi

 Di+1 = Di × dmin

 Empty set Neg

 if Fi > Ftarget

 Evaluate the current cascaded detector on the

set of full-size negatives and add any false

positives into Neg, subsample if necessary.

At each stage of the cascade, we keep adding base learners

until the predefined quality requirements are met. In our

case, we require the minimum detection rate of each stage to

be 99%, and the maximum false positive rate to be 0.65. We

trained 23 stages to reach about 0.65
23

≈ 5∙10
-5

 FPPW on the

training set, which corresponds to about 8 false positives in a

1280×960 image with dense scanning. The training took

several days running on a PC with 2.5GHz CPU and 3GB

memory.

D. CPU Implementation of the Cascaded Detector

For the training part of the algorithm, we integrated the

SVM training package SVMLight [10] into our code, and

modified it so that it can admit binary inputs, rather than

reading from text files. Since no ready-for-use software

function is available for AdaBoost training with SVM

features, we provided the code for the algorithm.

The implementation for the cascaded detector consists of

several parts (Figure 4). After acquiring the image and

converting it to grayscale, gradient magnitude and

orientation are computed for each pixel. Since the arctangent

function is costly to evaluate, we use a look-up table to

efficiently calculate the orientation bins. Next, we form the

integral histogram images for each of the 9 bins, and

generate the 36-D block histograms by accessing the

histogram images according to Figure 3. After L2-norm

normalization, we take the inner product of the block

histogram with a linear SVM describing the current base

learner. We evaluate all the features until rejection (negative

window), or completion (positive window). After

downsampling the image, we repeat this process until all

scales are accounted for.

Scanning the classifier across all positions and scales in

the image returns multiple detections for the same object at

similar scales and positions. Hence, neighboring detections

need to be fused together (non-maximum suppression).

Following [13], we achieve this using a mean shift algorithm

in 3D position/scale space. For a 1280×960 image with 8

pixel horizontal and vertical window strides and a scale ratio

of 1.05, the whole algorithm takes 5.4 seconds on the CPU.

Our implementation utilizes OpenCV libraries [12] for

image acquisition, gradient computation and forming the

integral histogram images.

IV. GPGPU AND NVIDIA CUDA

The term GPGPU refers to using graphics processing units

to accelerate non-graphics problems. The many-core

architecture of new generation GPUs enables them to

execute thousands of threads in parallel and make more than

1 teraflops floating point operations per second. This

computational power provides an excellent platform for

computer vision algorithms, especially the ones that can be

classified as “embarrassingly parallel”.

In our parallel implementation, we make use of NVIDIA’s

CUDA programming model, which is a software platform for

328

Downscale image

Compute gradient images

ma
Compute row sums

Transpose, compute column sums

Evaluate cascade stages

Non-maxima suppression, display results

 CPU

Figure 5: Steps of localization on the GPU

 CPU

GPU

Acquire image, convert to grayscale

massively parallel high-performance computing on the

GPUs. According to this model, parallel portions of an

application are executed on the GPU as kernels, which are

functions in written in the C language. CUDA allows these

kernels to be executed multiple times by multiple threads

simultaneously. A typical application would use thousands of

threads to achieve efficiency.

For scalability, multiple threads are grouped in thread

blocks and multiple blocks reside in a user specified grid. Up

to 512 threads can be grouped in a block, and threads within

the same block can cooperate via the block’s on-chip shared

memory (16kB) and synchronize their execution to

coordinate memory access. Each block runs on the same

multiprocessor, while a multiprocessor can execute several

blocks at a time.

Threads may access several different memory types during

their execution, albeit with different latencies. Apart from the

shared memory that is visible to all threads within a block,

each thread has a private local memory and registers.

Additionally, all threads have access to three types of off-

chip memory: The global memory (1792MB) has high

latency and is not cached. The constant memory (64kB) is

cached and typically fast if all threads are accessing the same

address. The texture memory is also cached and optimized

for 2D locality, and it allows virtually free hardware

interpolation. However, constant and texture memory are

read-only memory types.

When a thread needs to access the same address in the

high latency global memory multiple times, copying data to

the shared memory and accessing it from there would be

preferable. This is because it takes about 400 to 600 clock

cycles to issue a memory instruction for the global memory,

which has about 150 times more latency than the shared

memory. Each memory type in CUDA has different access

patterns and maximum sizes, hence developers need to

decide where the data are stored for the best performance.

In our experiments, we use a GeForce GTX 295 video

card. It contains 2×30 multiprocessors, each one containing

8 thread processors. Hence, it is capable of running 480

threads simultaneously.

A. GPU Implementation of the Cascaded Detector

Figure 5 shows the steps of our implementation, which

starts with transferring the image from the CPU to the GPU’s

global memory. At each scale integral histograms for the

discretized gradient orientations are computed, and these are

then evaluated by the ensemble classifiers for object

localization. When all scales are accounted for, the part of

the GPU’s global memory that contains the detection results

are copied to CPU’s main memory. Visualization of the

detected objects is presented in the form of bounding boxes,

and (optionally) mode estimation can be carried to fuse the

neighboring positives. In what follows, we detail the steps of

our detector.

Image acquisition and preprocessing: The input is

loaded to CPU memory and converted to grayscale with

OpenCV routines. Next, it is copied to a CUDA array

residing in the GPU’s global memory and bound a 2

dimensional texture. By setting the ReadMode attribute of

the texture appropriately, it is possible to get 32 bit floating

point image values scaled to [0, 1] from the integer valued

image pixels directly.

Downscaling and gradient computation: We evaluate

these steps inside a single kernel. Each thread in this kernel

corresponds to a single pixel, and they are grouped in 8×8

thread blocks for optimum efficiency. For downscaling, we

take advantage of the texturing unit to efficiently subsample

the target image by bilinear interpolation using the tex2D

function. At each pixel, horizontal and vertical gradients are

computed using centered convolution kernels [-1, 0, 1];

which we implement by simply taking the difference of the

neighboring pixels around the pixel of interest. In this step,

we also compute the gradient magnitude and the histogram

bin that it corresponds to. To register the magnitudes, we use

two float4 arrays I1-4 and I5-8, and one float array I9.

Hence, at a given pixel, we store its magnitude in the

appropriate field of I1-4 if its orientation is between 0° and

80°, in I5-8 if the orientation is between 80° and 160°, and in

I9 if it is larger than 160°.

Computing the integral histograms: Our

implementation is inspired by the Parallel Prefix Sum (Scan)

example [15]. The all-prefix-sums operation takes a binary

associative operator ⊕, and an array of n elements

],...,,[110 naaa

and returns

)]...(),...,(,[110100  naaaaaa

In our case the operator ⊕ is summation, and it generates a

new array where each element j is the sum of all elements up

to j. We apply this operation on each row of the input image

independently, then compute transpose of the image

329

efficiently based on the guidelines in [15]. If the rows of the

transposed image are again scanned with this operator, the

resultant array gives us the integral image. We perform these

steps on I1-4, I5-8, and I9 in order to compute the integral

histograms. For a detailed discussion of this step, please

refer to [16].

Evaluating the cascade stages: This stage contains the

random memory access operations that do not fit well in the

CUDA memory model. In order to evaluate a single HoG

feature, we need to access 9 different positions within 9

integral histogram images I1-4, I5-8, and I9 (Figure 3). Since

the relative positions of the accessed points are determined

by boosting, they are not continuous; hence memory

coalescence becomes a problem while reading data from the

global memory. There are two possible ways to overcome

this problem, we can either employ shared memory or use

textures. Let us explain why either method is not viable in

our case.

Using shared memory for feature evaluation: We let each

thread block be responsible for a detection window. Shared

memory allowance of each thread block is 16kB, which

corresponds to 4096 floating point numbers. Since our

detection windows have size 64×128, we need 2
13

∙ 9 ∙ 4 =

288kB of space to hold each window in the shared memory

for efficient random access. This is clearly not possible.

Using texture memory: Cache working set for texture

memory is 6 to 8kB for each multiprocessor. Even if we

assume that a multiprocessor executes one block at a time,

the texture cache is far smaller than our needs. Also, each

time we subsample the image we need to rebind the global

memory that holds the integral histograms to the texture

memory, but the programming model does not support writes

to textures bound to CUDA arrays. Hence we directly access

the global memory for feature evaluation.

We launch kernels sequentially for each ensemble. The

number of features in the early stages is much lower than it is

for the late stages. To make better use of the CUDA memory

model, we exploit this property by evaluating early and late

stages with different kernels:

Feature evaluation, early stages: Each thread block works

on a single detection window, and consists of 3×3×ni

threads, where ni is the number of base learners in the stage.

Thus, a group of 9 threads is responsible for a feature, and

all features are processed in parallel within a window. Each

thread in a group accesses a single address in the integral

histograms, reading all 9 bin values and recording them to

shared memory. When the 81 required elements for a base

learner are written to shared memory, threads go on to form

the 36 dimensional histogram descriptor. In order not to use

any additional shared memory, we make the necessary

computations to form the descriptors in place. We store the

linear SVM classifiers in a 1 dimensional texture, and

compute the dot product between the descriptor and the

classifier to get the vote of each base learner. After all

evaluations within the block are completed, we compare the

sum of the votes against the stage threshold Ti, and reject the

window if it falls below it. In this kernel formulation, a

thread block requires 9×9×4×ni bytes, which becomes larger

than 8kB when ni > 25. Hence, for stages with more than 25

learners, we utilize the following kernel:

Feature evaluation, late stages: When the number of base

learners is so high that it is not possible to launch more than

one thread block due to shared memory pressure, we resort

to a different kernel formulation. Now we employ two

dimensional blocks with size 3×ni, where a group of 3

threads are responsible for a single base learner. Each of

these 3 threads operate on one of I1-4, I5-8, or I9, compute all

4 cell histograms using the corresponding integral histogram

image, and write it to the shared memory. We note that by

sacrificing some parallelism, we are able to accommodate

more than 50 base learners in parallel within a single thread

block, before reaching a shared memory requirement of 8kB.

This is because we

consume only 36×4×ni bytes of shared memory per block

now. Normalization and taking the dot product with the

linear SVM features is again carried out in this kernel, and

each detection window is evaluated to either rejection or

completion. We note that by utilizing two different types of

kernels for feature evaluation, we observed an improvement

of 15ms for a 1280×960 image, with 1.05 subsampling ratio.

V. EXPERIMENTS

The cascaded classifier in our experiments consists of 23

stages and it reaches about 5 ∙ 10
-5

 FPPW false positive, and

0.99
23

≈ 0.8 detection rates on the training set. However, due

to the fact that we generate many hypotheses for each object

by searching densely in space and scale, the detection rate is

about 4% higher in the test set. Figure 7 provides details

about our cascade. To assess the depicted rejection rates at

given stage numbers, we scanned a test set of negative

images that contains over 1 million detection windows with

the cascaded classifier. We note that the method achieves to

reject more than 90% of the detection windows at the end of

4 stages, which contain only 16 features in total. More

complex stages are needed for only the hardest windows, and

this early rejection strategy is what gives the method a

significant speed up over the Dalal-Triggs algorithm. Since

each stage of the detector is trained on the false positives of

the current cascaded detector, it takes more involved

ensembles with larger number of base learners to attain the

same false positive rates as the number of stages increases

(Figure 7a).

In Table 1 we compare three techniques running on the

CPU: Dalal and Triggs, the cascaded detector

implementation of Zhu et al. in [2] with L2-normalization,

and our approach. We note that the detector of Zhu et al. has

30 stages and attains about 10
-5

 FPPW. However, our

detector has 23 stages, and we would expect it run slower if

we had trained an equal number of stages as [2].

On the average, 6.7 block evaluations are needed to

classify a detection window in our method. Compared to the

330

105 block evaluations made in the Dalal-Triggs approach,

we require 15.7 times less block evaluations, as evidenced by

the 14.7 speed up our implementation achieves.

Nevertheless, Zhu et al.’s method is about two times faster

than ours, evaluating 4.6 blocks on the average. We present

the miss-rate/FPPW curves of our cascade, Zhu et al.’s and

Dalal-Triggs’ approaches in Figure 8, and note that our

results are comparable with the other two, especially when

FPPW goes up. We think that the difference between the two

cascades arises from using different sets of parameters fmax,

dmin in training.

CPU detectors Sparse scan (800

windows / image)

Dense scan (12800

windows / image)

Dalal & Triggs 500 ms 7 sec

Zhu et al. 30 ms 250 ms

Our approach 82 ms 475 ms

Table 1: Time required to evaluate a 240×320 image. Sparse scan

corresponds to using 8×8 spatial stride and 1.2 downsampling ratio.

Dense scan generates more hypotheses by using 4×4 spatial stride

with 1.05 scaling ratio.

Table 2 presents a performance comparison between two

GPU implementations, Wojek et al.’s realization of the

Dalal−Triggs method [3] and our GPU approach for the

cascaded detector. We note that our implementation is

slower by 10% when the subsampling factor is 1.05, but

reaches a similar speed when it is 1.2. This difference should

be caused from our CPU dependent steps, whose number

increase as the number of scales increases. We also observe

a 13× speed up when our method runs on the GPU. In Table

3, we inspect occupancies and processing times for each part

in our algorithm.

To inspect the most informative blocks selected by the

AdaBoost algorithm, we visualize the blocks in cascade

stages 1, 3 and 5 in Figure 9. These blocks are the ones with

the lowest weighted error at that round out of 125 randomly

sampled blocks from the feature pool. Since the pool

contains more than 5000 blocks, the sample size is about

2.5% of the total, hence the selected blocks may not be the

best ones globally. We observe that the depicted blocks are

located in certain positions such as torso, legs, and head, so

the AdaBoost algorithm manages to select the histogram

blocks that have semantic meanings in the human body. We

also observed that the features in the early stages generally

have sizes much larger than the 16×16 blocks used in the

Dalal-Triggs approach. This fact gives us the power to

rapidly summarize the contents within windows and reject

them if they do not contain a person.

Detectors Scaling: 1.05 Scaling: 1.1 Scaling: 1.2

Wojek et al. 385 ms 216 ms 133 ms

Our GPU 422 ms 228 ms 131 ms

Our CPU 5470 ms 2963 ms 1710 ms

Table 2: Processing times for a 1280×960 image. Presented results

are for three different downscaling factors using 8×8 spatial strides.

We note that our results exclude mode estimation and [3] uses a

different GPU card than ours.

Figure 8: Comparing Zhu et al., Dalal & Triggs and our cascade.

Our implementation is comparable with the other two, especially

when FPPW goes up.

5 10 15 20
0

20

40

60

80

Cascade Stage

N
u

m
b

e
r

o
f
B

a
s
e

 L
e

a
rn

e
rs

Number of Base Learners per Cascade Stage

5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

Cascade Stage

R
e

je
c
ti
o

n
 R

a
te

Accumulated Rejection over Cascade Stages

 (a) (b)

Figure 7: Cascaded classifier that uses variable-size HoG blocks as features in detail. The cascade consists of 23 stages where the base

learners are linear SVMs with 36-D features of block histograms, chosen out of a feature pool of 5029 blocks with the AdaBoost

algorithm. (a) The number of base learners at each stage. (b) The rejection rate as a cumulative sum over the cascade stages. We note

that 4 stages are enough to reject more than 90% of the detection windows, providing significant speed up to the algorithm.

10
-4

10
-3

10
-2

0.01

0.1

0.5

false positives per window (FPPW)

m
is

s
 r

a
te

Comparing Different Approaches

Zhu et al.

Dalal & Triggs

Our cascade

331

Processing step Occupancy Memory

throughput

Processing

time

Data transfers − − 18 ms

Gradient kernel 50% 56 GB/s 6 ms

Integral hist.[16] 100% 17 – 50 GB/s 50 ms

Early cascade st. 25 – 50% 18 GB/s 16 ms

Late cascade st. 19 – 31% 7 GB/s 41 ms

Table 3: Average performance results for a 1280×960 image with

1.2 subsampling ratio. Values for kernels used in integral

histograms are reported in [16]. Occupancies of classification

kernels depend on the number of features at a given stage.

VI. CONCLUSIONS

We present a fast human detection framework that

achieves about 5∙10
-5

 FPPW on the training set and runs at 8

frames per second for a 1.2 megapixel image. By combining

the cascade-of-rejectors approach with the Histogram of

Oriented Gradients (HoG) features and selecting the

mutually most informative histogram blocks with the

AdaBoost algorithm, we are able to demonstrate near real

time detection performance. Our results are comparable in

terms of speed and accuracy with recent data parallel person

detectors.

REFERENCES

[1] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human

Detection. Conference on Computer Vision and Pattern Recognition

(CVPR), 2005

[2] Q. Zhu, S. Avidan, M. Yeh, and K. Cheng. Fast Human Detection

using a Cascade of Histograms of Oriented Gradients. Conference on

Computer Vision and Pattern Recognition (CVPR), 2006

[3] C. Wojek, G. Dorkó, A. Schulz, and B Schiele: Sliding-Windows for

Rapid Object Class Localization: A Parallel Technique. DAGM-

Symposium 2008: 71-81

[4] P. Viola and M. Jones. Rapid Object Detection Using a Boosted

Cascade of Simple Features. Conference on Computer Vision and

Pattern Recognition (CVPR), 2001

[5] M. Enzweiler and D. M. Gavrila. Monocular Pedestrian Detection:

Survey and Experiments. IEEE Transactions on Pattern Analysis and

Machine Intelligence 31(12) pp. 2179-2195

[6] C. Papageorgiou and T. Poggio. A Trainable System for Object

Detection. International Journal of Computer Vision (IJCV),

38(1):15-33, 2000

[7] D. M. Gavrila and V. Philomin. Real-Time Object Detection for

Smart Vehicles. Conference on Computer Vision and Pattern

Recognition (CVPR), 1999

[8] P. Viola, M. Jones and D. Snow. Detecting Pedestrians Using Patterns

of Motion and Appearance. International Conference on Computer

Vision (ICCV), 2003

[9] L. Zhang and R. Nevatia. Efficient Scan-Window Based Object

Detection Using GPGPU. Proc. IEEE CVPR Workshops

(CVPRW’08), pp. 1–7, Jun 2008.

[10] T. Joachims. Making Large-Scale SVM Learning Practical. Advances

in Kernel Methods - Support Vector Learning, B. Schölkopf and C.

Burges and A. Smola (ed.). MIT-Press, 1999.

[11] INRIA Object Detection and Localization Toolkit

http://pascal.inrialpes.fr/soft/olt

[12] OpenCV, Open Computer Vision Library

http://opencv.willowgarage.com/wiki/

[13] Navneet Dalal. Finding People in Images and Videos. PhD Thesis.

Institut National Polytechnique de Grenoble / INRIA Rhône-Alpes,

Grenoble, July 2006

[14] O. Tuzel, F. Porikli, and P. Meer. Human Detection via Classification

on Riemannian Manifolds. Conference on Computer Vision and

Pattern Recognition (CVPR), 2007

[15] M. Harris. Parallel Prefix Sum (Scan) with CUDA. NVIDIA CUDA

SDK code samples

[16] B. Bilgic, B.K.P. Horn, I. Masaki. Efficient Integral Image

Computation on the GPU. Submitted to IEEE Intelligent Vehicles

Symposium, 2010

 (a) (b) (c)

Figure 9: Visualizing the selected blocks by the AdaBoost

algorithm. (a) Blocks in the first stage, (b) blocks in stage 3, and

(c) blocks in stage 5 of the cascade. The blocks in (a)-(c) are the

blocks with lowest weighted error out of 125 features sampled

randomly from a feature pool of 5029 blocks.

332

