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Abstract— We investigate a fast pedestrian localization 

framework that integrates the cascade-of-rejectors approach 

with the Histograms of Oriented Gradients (HoG) features on a 

data parallel architecture. The salient features of humans are 

captured by HoG blocks of variable sizes and locations which 

are chosen by the AdaBoost algorithm from a large set of 

possible blocks. We use the integral image representation for 

histogram computation and a rejection cascade in a sliding-

windows manner, both of which can be implemented in a data 

parallel fashion. Utilizing the NVIDIA CUDA framework to 

realize this method on a Graphics Processing Unit (GPU), we 

report a speed up by a factor of 13 over our CPU 

implementation. For a 1280×960 image our parallel technique 

attains a processing speed of 2.5 to 8 frames per second 

depending on the image scanning density, which is similar to the 

recent GPU implementation of the original HoG algorithm in 

[3].  

 

I. INTRODUCTION 

etecting humans in images is a challenging task because 

of the variability in clothing and illumination 

conditions, and the wide range of poses that people can 

adopt. To discriminate the human shape clearly, Dalal and 

Triggs [1] proposed a gradient based, robust feature set that 

yielded excellent detection results. This method computes 

locally normalized gradient orientation histograms over 

blocks of size 16×16 to represent a detection window. When 

the block histograms within the window are concatenated, 

the resulting feature vector is powerful enough to classify 

humans with 88% detection rate at 10
-4

 false positives per 

window (FPPW) using a linear SVM. The detection window 

slides over the image in all possible image scales, hence this 

is computationally expensive, being able to run at 1 FPS for 

a 320×240 image with a sparse scanning methodology. 

To speed up the method, Zhu et al. [2] combined the 

cascade-of-rejectors approach [4] that has been the 

benchmark method in face recognition with the HoG 

features. This approach is based on early rejection of 

detection windows which clearly do not contain a person by 

evaluating a small number of features, and focusing the 
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computational resources on windows that are harder to 

classify. Since the Dalal-Triggs algorithm employs small, 

fixed-size histogram blocks defined in a dense grid, it is not 

possible to capture the “big picture” to make fast rejections 

with such blocks in the early stages of the cascade. To find 

out which combinations of blocks can be used together for 

summarizing a detection window in the early stages and for 

providing detail in the later stages, Zhu et al. proposed to 

choose the most informative blocks out of a large feature 

pool by using AdaBoost. The selected block features have 

the most suitable size, location and aspect ratio to 

complement the other features within each stage. 

By this formulation, the method was reported to yield 4 to 

30 FPS performance on a 320×240 image, depending on the 

scanning density. Although not reported, it is conceivable 

that this would correspond to about 0.3 to 2 FPS for a 

1280×960 image, not being able to run in real-time. 

In our work, we aim to show that by using efficient 

parallel algorithms with a technology called general-purpose 

computation on graphics processing units (GPGPU), we can 

speed up the cascade detector by a factor of 13 relative to 

our CPU implementation to achieve a near real-time 

performance of 8 FPS for a 1280×960 image. 

In the rest of this paper, we give a brief background 

information human detection and GPGPU, describe the 

cascade-of-rejectors algorithm, and give details about our 

CPU and GPU implementations. We finish with 

experimental results. 

I. BACKGROUND 

There is an extensive literature on human detection, and 

[5] gives an elegant survey on this topic. Papageorgiou et al. 

[6] presents a detector that combines Haar wavelet features 

with a polynomial SVM classifier. Gavrila and Philomin [7] 

use the chamfer distance of edge images, and match them 

with a learned exemplar set. Viola et al. [8] use AdaBoost to 

train a chain of rejection rules that employ Haar-like 

wavelets and spatial-temporal differences. Dalal and Triggs 

[1] use a single window approach with a dense HoG 

descriptor and a linear SVM for classification. Tuzel et al. 

[14] demonstrate superior results over the Dalal-Triggs 

algorithm by using covariance matrices as object descriptors. 

Due its simplicity and high descriptive power, several 

authors worked on the Dalal-Triggs algorithm to make it 

feasible for real time detection. Among these, Wojek et al. 

[3] and Zhang et al. [9] suggest using the GPGPU 

technology for implementation. In [3], a speed up by a factor 

of 34 over the original CPU implementation by [1] is 
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reported, and this corresponds to a processing time of 385ms 

per 1280×960 image. Similarly, the work in [9] achieves a 

more than 10 times speed up over the original CPU code of 

[1]. Zhu et al. [2] suggest formulating the HoG algorithm as 

a rejection cascade and demonstrate 30× speed up over the 

original algorithm for 320×240 images, both working on the 

CPU. 

II. THE DALAL-TRIGGS ALGORITHM 

The method starts by applying square root gamma 

correction to the input RGB image. Then gradients are 

computed for all three color channels using centered kernels 

[-1, 0, 1] in horizontal and vertical directions. For each pixel, 

the gradient magnitude is taken from the color channel with 

the largest gradient norm. Next, gradient orientations are 

computed and discretized into 9 orientation bins, lying 

between 0° and 180°. A weighted vote for an edge 

orientation histogram is calculated for a given pixel, and the 

votes are accumulated into orientation bins over local spatial 

regions called cells. To reduce the aliasing, the gradient 

votes are trilinearly interpolated between neighboring bin 

centers in orientation and space. Cells are taken to be of size 

8×8 pixels, and grids of 2×2 cells are grouped in blocks. 

Since each cell is represented by 9 histogram bins, a 

histogram block then has a 36 dimensional feature vector. To 

increase robustness, each block is normalized with L2-Hys 

norm; L2-norm followed by clipping the maximum element 

in the vector to 0.2. Within a detection window of size 

64×128 a total of 105 blocks can be defined, when 

overlapping by 8 pixels in both dimensions is allowed. This 

way, each window is represented by a 105×36 = 3780 

dimensional feature vector, which is used to train a linear 

SVM classifier. The detection window scans over the whole 

image with vertical and horizontal strides of 8 pixels, then 

the image is downscaled with a ratio of 1.05. This process 

continues until all scales are accounted for. Finally, a mode 

estimator based on the mean shift algorithm fuses multiple 

detections in space and scale to return bounding boxes 

corresponding to detections. Given a 1280×960 image, all 

these correspond to evaluating about 150000 detection 

windows, which takes many seconds to run on a CPU.     

III. THE CASCADE-OF-REJECTORS ALGORITHM 

The success of the Dalal-Triggs algorithm depends on two 

key factors: a dense window descriptor based on small 

histogram blocks and local block normalization that 

emphasizes their relative behavior. Firstly, even though this 

dense formulization gives an excellent description power, it 

also results in redundant computations for image regions that 

clearly do not resemble a human. Using a coarser descriptor 

would prune these computations, and enable us to focus our 

resources on detection windows that are harder to classify. 

Secondly, as noted in [2], small histogram blocks of size 

16×16 might miss the “big picture”, being unable to 

correspond to a semantic part of the human body. These 

mappings might be recovered if blocks of larger sizes and 

different aspect ratios could be employed.  

To address these points, Zhu et al. [2] proposed to form an 

attentional cascade consisting of stages that get progressively 

more complex (Figure 1). By using HoG blocks of different 

sizes, locations and aspect ratios as features, it is possible to 

run the AdaBoost algorithm to determine which features to 

evaluate in each stage of the cascade. Thus, the complete 

detector is formed by a cascade of ensemble classifiers, each 

of which uses base learners that are linear SVMs based on 

the chosen HoG block features. In our algorithm our feature 

pool contains 5029 HoG blocks, as opposed to the 105 fixed 

size blocks that define a window in the Dalal-Triggs 

algorithm. We also note that the first stages of the cascade 

employ large blocks that attempt to capture the “big picture” 

and the later stages include smaller ones to provide more 

detail. 

We also note that this rejection cascade was first 

introduced in Viola & Jones’ seminal face detection work 

[4], where they suggested using Haar-like wavelets as 

features. However, this methodology was reported to be 

unable to perform equally well in human detection, 

especially in a cluttered, complex dataset [5, 2].  

Another important contribution in [4] was the introduction 

of the integral image for rapid evaluation of features. 

Paralleling [2], we also use the integral image idea to 

compute the orientation histogram of the image. 

 

A. Integral Histograms of Oriented Gradients 

By setting the horizontal and vertical window strides to 8 

pixels, which is equal to the strides of histogram blocks 

within the detection windows, the Dalal-Triggs algorithm 

eliminates the redundant computations. Computing and 

caching the block histograms over the whole image and 

sharing them among the detection windows makes it possible 

to work around the problem of recomputing data for 

overlapping windows. However, in the case of the cascade 

algorithm, it is not possible to cache the histograms and 

share them among the windows since the relative locations of 

blocks have no order and a “block stride” cannot be defined. 

This leads us to using the integral image idea. 

Figure 1: Cascade-of-rejectors. Detection window is passed to 

the stage 1 which decides true or false. A false determination 

stops further computation, and the window is classified to 

contain non-pedestrian. A true determination triggers the 

computation at the following stage. Only if the window passes 

through all the stages, it is classified to contain a person. 
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The integral image, introduced in [4] and detailed in 

Figure 2, enables us to compute the sum of the elements 

within a rectangular region by using 4 image access 

operations. As in [2], we discretize each pixel’s gradient 

orientation into 9 bins, then compute and store an integral 

image for each histogram bin. The HoG for any rectangular 

region then can be computed by 9 × 4 = 36 image access 

operations, 4 for each of the 9 bins.  

This formulation differs from the Dalal-Triggs algorithm 

because of the omissions of the Gaussian mask used for 

weighting the votes of histogram blocks, and the trilinear 

interpolation (in space and orientation) used for 

histogramming. 

B. Histogram Cells and Blocks 

For a 64×128 detection window, we consider block sizes 

ranging from 12×12 to 64×128, with the constraint that the 

block width and height must be divisible by two. Also, we 

consider block aspect ratios of (1 : 1), (1 : 2) and (2 : 1). 

Depending on the block size, we choose a step size which 

can take values {4, 6, 8}. This way, we can define a feature 

pool of 5029 distinct blocks. Each of these blocks is further 

divided into a grid of 2×2 histogram cells, over which the 

orientation histograms are computed. Each cell gives rise to 

a 9 dimensional histogram vector, and these are concatenated 

to form a 36 dimensional block histogram. Computing a 

single block histogram thus requires 9 × 9 = 81 integral 

histogram accesses (Figure 3).   

Choosing the histogram blocks out of a large pool of 

features gives us the power to represent semantic parts in the 

human body in an explicit way (some parts may correspond 

to torso, legs, etc.). By placing these features in a cascade 

that progressively gets more complex, we also avoid making 

unnecessary computations for objects that do not resemble a 

person, since the blocks in the early stages are usually large, 

and they capture the “big picture” effortlessly. In the original 

Dalal-Triggs algorithm, we make the same amount of 

computation for each window, regardless of the complexity 

of the classification task we are trying to solve. 

 

C. Training the Cascade with AdaBoost 

Paralleling [2], we use 36 dimensional histogram blocks as 

base learners in constructing the cascade classifier. These 

learners are linear SVMs trained on the positive and negative 

training examples. Each stage of the cascade is a strong 

classifier formulated as an ensemble of these base learners, 

 

 

 

 

 

 

where si (.) is the strong classifier (ensemble) at stage i, fit (.) 

is the t
th

 base learner of this stage with voting weight αit, ni is 

the number of  the base learners in this stage, and Ti is the 

detection threshold. Each base learner has the form  

 

 

 

 

and the parameters θ and θ0 are learned with our modified 

version of the SVM package SVMLight [10]. 

Since there are more than 5000 possible features in our 

pool to choose from, we randomly sample 125 blocks at each 

round of the AdaBoost algorithm and train linear SVMs. As 

noted in [2], choosing the best feature from about 59 random 

samples will guarantee nearly as good performance as if we 

used all the features. By settling for 125, we substantially 

decrease the training time meanwhile keeping feature quality 

reasonably high. 

For all stages, we use the 2416 positive images of size 

64×128 in the INRIA database [11]. For the first stage, we 

randomly sample 2416 negative windows of size 64×128 

from the 1654 full-size (≥ 320×240) negative images from 

INRIA. Then, each next stage in the cascade uses the false 

positives obtained by running the current cascade classifier 

over these full-size negative images as the negative training 

Figure 2: The value of the integral image Iint at point (x, y) is the 

sum of all the pixels above and to the left in the input image I; 
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Figure 3: Computing the block histogram for a block with size 

W×H. Using the ith integral histogram, it is possible to compute 

the ith elements of the cell histograms using 4 image accesses. 

For instance, ith element of cell 1’s orientation histogram is 

computed as hi[5] + hi[1] − hi[2] − hi[4]. Overall, we need 9 

accesses for the ith bin, and 81 for all 9 bins. 
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Acquire image 

Downscale image 

Compute gradient 

magnitude and orientations 

ma 
Compute integral histograms 

Obtain block histograms 

Evaluate cascade stages 

Non-maxima suppression 

Display results 

Cascaded Detector on CPU 

Figure 4: Steps of localization using the cascaded HoG detector 

on the CPU 

 

set. We randomly subsample these false positives since they 

exceed 2416. Because each new stage is forced to classify 

examples that the current cascade fails to classify, stages 

tend to contain progressively more features, hence they 

become more complex. 

 

Algorithm: Training the cascade with AdaBoost 
 

User selects values for fmax, the maximum acceptable 

false positive rate per stage, dmin, the minimum 

acceptable detection rate per stage and Ftarget, target 

overall false positive rate. 

Pos: set of positive samples (INRIA training positives)   

Neg: set of negative samples (sampled from INRIA 

training full-size negatives) 
 

initialization: i = 0, Di = 1.0, Fi = 1.0 

while Fi > Ftarget 

          i = i + 1, fi = 1.0 

          while fi > fmax 

 Train 125 randomly sampled linear SVMs 

using Pos and Neg 

 Add the best SVM into the ensemble with the 

appropriate vote determined by AdaBoost 

 Update weights of the examples in AdaBoost 

manner 

 Evaluate Pos and Neg with the current 

ensemble 

 Decrease the threshold Ti until dmin holds 

 Compute fi under this threshold 

           Fi+1 = Fi × fi 

           Di+1 = Di × dmin 

           Empty set Neg 

           if Fi > Ftarget 

 Evaluate the current cascaded detector on the 

set of full-size negatives and add any false 

positives into Neg, subsample if necessary.  

 

At each stage of the cascade, we keep adding base learners 

until the predefined quality requirements are met. In our 

case, we require the minimum detection rate of each stage to 

be 99%, and the maximum false positive rate to be 0.65. We 

trained 23 stages to reach about 0.65
23 

≈ 5∙10
-5

 FPPW on the 

training set, which corresponds to about 8 false positives in a 

1280×960 image with dense scanning. The training took 

several days running on a PC with 2.5GHz CPU and 3GB 

memory. 

D. CPU Implementation of the Cascaded Detector 

For the training part of the algorithm, we integrated the 

SVM training package SVMLight [10] into our code, and 

modified it so that it can admit binary inputs, rather than 

reading from text files. Since no ready-for-use software 

function is available for AdaBoost training with SVM 

features, we provided the code for the algorithm.  

The implementation for the cascaded detector consists of 

several parts (Figure 4). After acquiring the image and 

converting it to grayscale, gradient magnitude and 

orientation are computed for each pixel. Since the arctangent 

function is costly to evaluate, we use a look-up table to 

efficiently calculate the orientation bins. Next, we form the 

integral histogram images for each of the 9 bins, and 

generate the 36-D block histograms by accessing the 

histogram images according to Figure 3. After L2-norm 

normalization, we take the inner product of the block 

histogram with a linear SVM describing the current base  

learner. We evaluate all the features until rejection (negative 

window), or completion (positive window). After 

downsampling the image, we repeat this process until all 

scales are accounted for. 

Scanning the classifier across all positions and scales in 

the image returns multiple detections for the same object at 

similar scales and positions. Hence, neighboring detections 

need to be fused together (non-maximum suppression). 

Following [13], we achieve this using a mean shift algorithm 

in 3D position/scale space. For a 1280×960 image with 8 

pixel horizontal and vertical window strides and a scale ratio 

of 1.05, the whole algorithm takes 5.4 seconds on the CPU.  

Our implementation utilizes OpenCV libraries [12] for 

image acquisition, gradient computation and forming the 

integral histogram images. 

 

 

 

 

 

 

 

 

 

 

IV. GPGPU AND NVIDIA CUDA 

The term GPGPU refers to using graphics processing units 

to accelerate non-graphics problems. The many-core 

architecture of new generation GPUs enables them to 

execute thousands of threads in parallel and make more than 

1 teraflops floating point operations per second. This 

computational power provides an excellent platform for 

computer vision algorithms, especially the ones that can be 

classified as “embarrassingly parallel”.  

In our parallel implementation, we make use of NVIDIA’s 

CUDA programming model, which is a software platform for 

328



  

Downscale image 

Compute gradient images 

 

ma 
Compute row sums 

Transpose, compute column sums 

Evaluate cascade stages 

Non-maxima suppression, display results 

    CPU 

Figure 5: Steps of localization on the GPU 
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Acquire image, convert to grayscale 

massively parallel high-performance computing on the 

GPUs. According to this model, parallel portions of an 

application are executed on the GPU as kernels, which are 

functions in written in the C language. CUDA allows these 

kernels to be executed multiple times by multiple threads 

simultaneously. A typical application would use thousands of 

threads to achieve efficiency.  

For scalability, multiple threads are grouped in thread 

blocks and multiple blocks reside in a user specified grid. Up 

to 512 threads can be grouped in a block, and threads within 

the same block can cooperate via the block’s on-chip shared 

memory (16kB) and synchronize their execution to 

coordinate memory access. Each block runs on the same 

multiprocessor, while a multiprocessor can execute several 

blocks at a time. 

Threads may access several different memory types during 

their execution, albeit with different latencies. Apart from the 

shared memory that is visible to all threads within a block, 

each thread has a private local memory and registers. 

Additionally, all threads have access to three types of off-

chip memory: The global memory (1792MB) has high 

latency and is not cached. The constant memory (64kB) is 

cached and typically fast if all threads are accessing the same 

address. The texture memory is also cached and optimized 

for 2D locality, and it allows virtually free hardware 

interpolation. However, constant and texture memory are 

read-only memory types. 

When a thread needs to access the same address in the 

high latency global memory multiple times, copying data to 

the shared memory and accessing it from there would be 

preferable. This is because it takes about 400 to 600 clock 

cycles to issue a memory instruction for the global memory, 

which has about 150 times more latency than the shared 

memory. Each memory type in CUDA has different access 

patterns and maximum sizes, hence developers need to 

decide where the data are stored for the best performance. 

In our experiments, we use a GeForce GTX 295 video 

card. It contains 2×30 multiprocessors, each one containing 

8 thread processors. Hence, it is capable of running 480 

threads simultaneously. 

A. GPU Implementation of the Cascaded Detector 

Figure 5 shows the steps of our implementation, which 

starts with transferring the image from the CPU to the GPU’s 

global memory. At each scale integral histograms for the 

discretized gradient orientations are computed, and these are 

then evaluated by the ensemble classifiers for object 

localization. When all scales are accounted for, the part of 

the GPU’s global memory that contains the detection results 

are copied to CPU’s main memory. Visualization of the 

detected objects is presented in the form of bounding boxes, 

and (optionally) mode estimation can be carried to fuse the 

neighboring positives. In what follows, we detail the steps of 

our detector. 

Image acquisition and preprocessing: The input is 

loaded to CPU memory and converted to grayscale with 

OpenCV routines. Next, it is copied to a CUDA array 

residing in the GPU’s global memory and bound a 2 

dimensional texture. By setting the ReadMode attribute of 

the texture appropriately, it is possible to get 32 bit floating 

point image values scaled to [0, 1] from the integer valued 

image pixels directly. 

Downscaling and gradient computation: We evaluate 

these steps inside a single kernel. Each thread in this kernel 

corresponds to a single pixel, and they are grouped in 8×8 

thread blocks for optimum efficiency. For downscaling, we 

take advantage of the texturing unit to efficiently subsample 

the target image by bilinear interpolation using the tex2D 

function. At each pixel, horizontal and vertical gradients are 

computed using centered convolution kernels [-1, 0, 1]; 

which we implement by simply taking the difference of the 

neighboring pixels around the pixel of interest. In this step, 

we also compute the gradient magnitude and the histogram 

bin that it corresponds to. To register the magnitudes, we use 

two float4 arrays I1-4 and I5-8, and one float array I9. 

Hence, at a given pixel, we store its magnitude in the 

appropriate field of I1-4 if its orientation is between 0° and 

80°, in I5-8 if the orientation is between 80° and 160°, and in 

I9 if it is larger than 160°. 

Computing the integral histograms: Our 

implementation is inspired by the Parallel Prefix Sum (Scan) 

example [15]. The all-prefix-sums operation takes a binary 

associative operator ⊕, and an array of n elements 

],...,,[ 110 naaa  

and returns  

)]...(),...,(,[ 110100  naaaaaa  

In our case the operator ⊕ is summation, and it generates a 

new array where each element j is the sum of all elements up 

to j. We apply this operation on each row of the input image 

independently, then compute transpose of the image 
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efficiently based on the guidelines in [15]. If the rows of the 

transposed image are again scanned with this operator, the 

resultant array gives us the integral image. We perform these 

steps on I1-4, I5-8, and I9 in order to compute the integral 

histograms. For a detailed discussion of this step, please 

refer to [16]. 

Evaluating the cascade stages: This stage contains the 

random memory access operations that do not fit well in the 

CUDA memory model. In order to evaluate a single HoG 

feature, we need to access 9 different positions within 9 

integral histogram images I1-4, I5-8, and I9 (Figure 3). Since 

the relative positions of the accessed points are determined 

by boosting, they are not continuous; hence memory 

coalescence becomes a problem while reading data from the 

global memory. There are two possible ways to overcome 

this problem, we can either employ shared memory or use 

textures. Let us explain why either method is not viable in 

our case. 

Using shared memory for feature evaluation: We let each 

thread block be responsible for a detection window. Shared 

memory allowance of each thread block is 16kB, which 

corresponds to 4096 floating point numbers. Since our 

detection windows have size 64×128, we need 2
13 

∙ 9 ∙ 4 = 

288kB of space to hold each window in the shared memory 

for efficient random access. This is clearly not possible. 

Using texture memory: Cache working set for texture 

memory is 6 to 8kB for each multiprocessor. Even if we 

assume that a multiprocessor executes one block at a time, 

the texture cache is far smaller than our needs. Also, each 

time we subsample the image we need to rebind the global 

memory that holds the integral histograms to the texture 

memory, but the programming model does not support writes 

to textures bound to CUDA arrays. Hence we directly access 

the global memory for feature evaluation. 

We launch kernels sequentially for each ensemble. The 

number of features in the early stages is much lower than it is 

for the late stages. To make better use of the CUDA memory 

model, we exploit this property by evaluating early and late 

stages with different kernels: 

Feature evaluation, early stages: Each thread block works 

on a single detection window, and consists of 3×3×ni 

threads, where ni is the number of base learners in the stage. 

Thus, a group of 9 threads is responsible for a feature, and 

all features are processed in parallel within a window. Each 

thread in a group accesses a single address in the integral 

histograms, reading all 9 bin values and recording them to 

shared memory. When the 81 required elements for a base 

learner are written to shared memory, threads go on to form 

the 36 dimensional histogram descriptor. In order not to use 

any additional shared memory, we make the necessary 

computations to form the descriptors in place. We store the 

linear SVM classifiers in a 1 dimensional texture, and 

compute the dot product between the descriptor and the 

classifier to get the vote of each base learner. After all 

evaluations within the block are completed, we compare the 

sum of the votes against the stage threshold Ti, and reject the 

window if it falls below it. In this kernel formulation, a 

thread block requires 9×9×4×ni bytes, which becomes larger 

than 8kB when ni > 25. Hence, for stages with more than 25 

learners, we utilize the following kernel: 

Feature evaluation, late stages: When the number of base 

learners is so high that it is not possible to launch more than 

one thread block due to shared memory pressure, we resort 

to a different kernel formulation. Now we employ two 

dimensional blocks with size 3×ni, where a group of 3 

threads are responsible for a single base learner. Each of 

these 3 threads operate on one of I1-4, I5-8, or I9, compute all 

4 cell histograms using the corresponding integral histogram 

image, and write it to the shared memory. We note that by 

sacrificing some parallelism, we are able to accommodate 

more than 50 base learners in parallel within a single thread 

block, before reaching a shared memory requirement of 8kB. 

This is because we  

consume only 36×4×ni bytes of shared memory per block 

now. Normalization and taking the dot product with the 

linear SVM features is again carried out in this kernel, and 

each detection window is evaluated to either rejection or 

completion. We note that by utilizing two different types of 

kernels for feature evaluation, we observed an improvement 

of 15ms for a 1280×960 image, with 1.05 subsampling ratio. 

V. EXPERIMENTS 

The cascaded classifier in our experiments consists of 23 

stages and it reaches about 5 ∙ 10
-5

 FPPW false positive, and 

0.99
23 

≈ 0.8 detection rates on the training set. However, due 

to the fact that we generate many hypotheses for each object 

by searching densely in space and scale, the detection rate is 

about 4% higher in the test set. Figure 7 provides details 

about our cascade. To assess the depicted rejection rates at 

given stage numbers, we scanned a test set of negative 

images that contains over 1 million detection windows with 

the cascaded classifier. We note that the method achieves to 

reject more than 90% of the detection windows at the end of 

4 stages, which contain only 16 features in total. More 

complex stages are needed for only the hardest windows, and 

this early rejection strategy is what gives the method a 

significant speed up over the Dalal-Triggs algorithm. Since 

each stage of the detector is trained on the false positives of 

the current cascaded detector, it takes more involved 

ensembles with larger number of base learners to attain the 

same false positive rates as the number of stages increases 

(Figure 7a).  

In Table 1 we compare three techniques running on the 

CPU: Dalal and Triggs, the cascaded detector 

implementation of Zhu et al. in [2] with L2-normalization, 

and our approach. We note that the detector of Zhu et al. has 

30 stages and attains about 10
-5

 FPPW. However, our 

detector has 23 stages, and we would expect it run slower if 

we had trained an equal number of stages as [2]. 

On the average, 6.7 block evaluations are needed to 

classify a detection window in our method. Compared to the  
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105 block evaluations made in the Dalal-Triggs approach, 

we require 15.7 times less block evaluations, as evidenced by 

the 14.7 speed up our implementation achieves. 

Nevertheless, Zhu et al.’s method is about two times faster 

than ours, evaluating 4.6 blocks on the average. We present 

the miss-rate/FPPW curves of our cascade, Zhu et al.’s and 

Dalal-Triggs’ approaches in Figure 8, and note that our 

results are comparable with the other two, especially when 

FPPW goes up. We think that the difference between the two 

cascades arises from using different sets of parameters fmax, 

dmin in training. 

 
CPU detectors Sparse scan (800 

windows / image) 

Dense scan (12800 

windows / image) 

Dalal & Triggs 500 ms 7 sec 

Zhu et al. 30 ms 250 ms 

Our approach 82 ms 475 ms 
 

Table 1: Time required to evaluate a 240×320 image. Sparse scan 

corresponds to using 8×8 spatial stride and 1.2 downsampling ratio. 

Dense scan generates more hypotheses by using 4×4 spatial stride 

with 1.05 scaling ratio.  

 

 

Table 2 presents a performance comparison between two 

GPU implementations, Wojek et al.’s realization of the 

Dalal−Triggs method [3] and our GPU approach for the 

cascaded detector. We note that our implementation is 

slower by 10% when the subsampling factor is 1.05, but 

reaches a similar speed when it is 1.2. This difference should 

be caused from our CPU dependent steps, whose number 

increase as the number of scales increases. We also observe 

a 13× speed up when our method runs on the GPU. In Table 

3, we inspect occupancies and processing times for each part 

in our algorithm. 

To inspect the most informative blocks selected by the 

AdaBoost algorithm, we visualize the blocks in cascade 

stages 1, 3 and 5 in Figure 9. These blocks are the ones with 

the lowest weighted error at that round out of 125 randomly 

sampled blocks from the feature pool. Since the pool 

contains more than 5000 blocks, the sample size is about 

2.5% of the total, hence the selected blocks may not be the 

best ones globally. We observe that the depicted blocks are 

located in certain positions such as torso, legs, and head, so 

the AdaBoost algorithm manages to select the histogram 

blocks that have semantic meanings in the human body. We 

also observed that the features in the early stages generally 

have sizes much larger than the 16×16 blocks used in the 

Dalal-Triggs approach. This fact gives us the power to 

rapidly summarize the contents within windows and reject 

them if they do not contain a person. 

 

 
 

Detectors Scaling: 1.05 Scaling: 1.1 Scaling: 1.2 

Wojek et al. 385 ms 216 ms 133 ms 

Our GPU 422 ms 228 ms 131 ms 

Our CPU 5470 ms 2963 ms 1710 ms 
 

Table 2: Processing times for a 1280×960 image. Presented results 

are for three different downscaling factors using 8×8 spatial strides. 

We note that our results exclude mode estimation and [3] uses a 

different GPU card than ours. 

 

 

 

Figure 8: Comparing Zhu et al., Dalal & Triggs and our cascade. 

Our implementation is comparable with the other two, especially 

when FPPW goes up. 
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      (a)                                                                                       (b)  

Figure 7: Cascaded classifier that uses variable-size HoG blocks as features in detail. The cascade consists of 23 stages where the base 

learners are linear SVMs with 36-D features of block histograms, chosen out of a feature pool of 5029 blocks with the AdaBoost 

algorithm. (a) The number of base learners at each stage. (b) The rejection rate as a cumulative sum over the cascade stages. We note 

that 4 stages are enough to reject more than 90% of the detection windows, providing significant speed up to the algorithm.  
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Processing step Occupancy Memory 

throughput 

Processing 

time 

Data transfers − − 18 ms 

Gradient kernel 50% 56 GB/s 6 ms 

Integral hist.[16] 100% 17 – 50 GB/s 50 ms 

Early cascade st. 25 – 50% 18 GB/s 16 ms 

Late cascade st. 19 – 31% 7 GB/s 41 ms 
 

Table 3: Average performance results for a 1280×960 image with 

1.2 subsampling ratio. Values for kernels used in integral 

histograms are reported in [16]. Occupancies of classification 

kernels depend on the number of features at a given stage. 

 

 

VI. CONCLUSIONS 

We present a fast human detection framework that 

achieves about 5∙10
-5

 FPPW on the training set and runs at 8 

frames per second for a 1.2 megapixel image. By combining 

the cascade-of-rejectors approach with the Histogram of 

Oriented Gradients (HoG) features and selecting the 

mutually most informative histogram blocks with the 

AdaBoost algorithm, we are able to demonstrate near real 

time detection performance. Our results are comparable in 

terms of speed and accuracy with recent data parallel person 

detectors. 
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  (a)              (b)           (c) 

Figure 9: Visualizing the selected blocks by the AdaBoost 

algorithm. (a) Blocks in the first stage, (b) blocks in stage 3, and 

(c) blocks in stage 5 of the cascade. The blocks in (a)-(c) are the 

blocks with lowest weighted error out of 125 features sampled 

randomly from a feature pool of 5029 blocks. 
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