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Echo Planar Imaging (EPI)

* EPl is very efficient: collects entire k-space plane per excitation

Kx distortion oRx artfifacts



Echo Planar Imaging (EPI)

* EPl is very efficient: collects entire k-space plane per excitation

» Distorfion & blurring preclude high-res EP!

distortion PRx artifacts
T,* blurring



MsEPI could mitigate distortion & blurring

Combining shots is prohibitively hard

k-space CI)1 physiologic artifacts
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Shot-to-shot variations can be mitigated using navigators [1]
reduced efficiency, remaining artifacts

Navigator-free approaches use pRx to recon an image for
each shot and estimate phase variations [2]

PRx breaks down at R>4, limiting distortion & blurring reduction

Navigated & nav-free methods only been applied to diffusion

[1] DA Porter, MRM'09
[2] NK Chen, Neurolmage'13



We enable GRE msEPI for the first time

where physiologic phase has higher spaftial variations

Navigator- & artifact-free multi-contrast msePI

spin-and-gradient-echo (SAGE) [1]

T,, T,* maps & iImages

[1] H Schmiedeskamp, MRM'12



NEATR: synergistic Machine + Physics recon

ML: interim image with minimal artifacts

Jumpstart Physics / forward-model based recon:
accurately estimate & eliminate artifacts

validate & improve ML to avoid “black-box”



NEATR allows R=6 msEPI from 2-shofts

SENSE @ R=6 Residual CNN

refine magnitude
using CNN



- Optimization for residual is easier than clean image

error in
SENSE

[1] O Ronneberger, MICCAI'15
[2] KHe, CVPR'16



Deep Residual CNNT2

» Optimization for residual is easier than clean image
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Deep Residual CNN

* Why Convolutional
» Sparse inferactions: much fewer unknowns
* Each arrow: one unknown
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- Why Deep

* More layers describe complex intferactions between many
voriobles
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NEATR allows R=6 msEPI from 2-shofts

Residual CNN phase of shofts

[ 1

fix CNN magnitude
solve for shot phase




Shot phase esfimation

* Fix U-Net magnitude: m

- Solve for phase of shot ¢ [1]: ¢t
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[1] FOng, MRM'18



Shot phase esfimation

- Fix U-Net magnitude: My et

- Solve for phase of shot ¢ [1]: ¢t
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encoding

[1] FOng, MRM'18



Shot phase estimation

* Fix U-Net magnitude: m,, .:

- Solve for phase of shot ¢ [1]:
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NEATR allows R=6 msEPI from 2-shofts

phase of shots Joint Recon

use shot phases for extra
encoding & all data



Joint physics recon

» Once shot phases are estimated, solve for magnitude m

data from all shots joint recon

sum over shots



Joint physics recon

» Once shot phases are estimated, solve for magnitude m

data from all shots joint recon
virfual coill [1] real-valued m

[1] M Blaimer, MRM'09



Joint physics recon

» Once shot phases are estimated, solve for magnitude m

data from all shots joint recon
virfual coill [1] real-valued m

[1] M Blaimer, MRM'09



SAGE msEPI with 2-shots at R=3

Six volunteers scanned
three for training, three for test

1.5x 1.5 mmZ2in-plane, 3 mm slice thickness

Fourechoes TE=2/7/74/122/ 169 ms
TR=12.6 secC

code / data:



SAGE msEPI with 2-shots at R=3
PRx recon @ R=3 provided “clean” target for training

Data were refrospectively undersampled by R=6

Each shot was reconed with SENSE @ R=6
to provide “corrupt” input for U-Nef

U-Net:  multi-contrast, augmented 16-fold

code / data:



SAGE msEPI: R=6 accl with 2-shofts

TE=27ms 74ms 122ms 169ms X Error {avg
ot ; over echoes)

SENSE @ R=6 y (SSE\
11.3% RMSE (&€ % =8
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whole-brain msePl in 25 sec @ R=6 with 2-shofts

Avg over echoes
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code / data: martinos.org/~berkin




Training was on Siemens Skyra
TE =98 ms (avQ)
TR =12.6 secC

Another test case from Prisma system
TE =68 ms (avg)
TR =9.1 sec

40% difference in TE & TR

code / data:



R=6 with 2-shofs: Another scanner & different parameters
TE:19ms 02MS 84ms 117ms

SENSE @ R=6
12.3% RMSE

CNN
9.57 RMSE

Joint Recon
8.4% RMSE



PROSPECTIVE R=6 with 2-shofs

SENSE @ R=6

Joint Recon




* [terate: physics recon & shot phase estimation

phase of sho’rs
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Joint Recon




* [terate: physics recon & shot phase estimation

phase of sho’rs
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Joint Recon

Joint Recon
3 iters !




* lterate: physics recon & shot phase estimation

< Joint pRx & joint sparsity across contrasts

< wave-CAIPI forR=8

Joint Recon
3iters \




Motion Correction

» Physics recon: use redundancy in mulfi-channel coill

F- Coll -\Mo’rion (imcge)’ = {<—sp0ce}

unknown cormupt Physics-based!

[1] M Haskell, TMI'18



NEATER: In Motion Correction

» Residual learning:  Jumpstart physics-recon
* Trained on Alzheimer’s patients data

Physics-based!
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* [terate: physics recon & shot phase estimation

phase of shots m Joint Recon

code / data:



Iterate: physics recon & shot phase estimation

Joint pRx & joint sparsity across contrasts for R = 8

code / data:



NEATR: synergistic combo of Machine + Physics
prevents black-box ML

Physics recon keeps ML in check
ML enables R=6 (not possible with pRXx)

NEATR reduced RMSE 1.6-fold over SENSE
enabled fast, low-distortion,
artifact- & nav-free imaging

code / data:



Thank you for your attention!

» Questions / comments:
berkin@nmr.mgh.harvard.edu

- Recon code / data:
martinos.org/~berkin




