

Joint Reconstruction for Phase-Cycled Balanced SSFP

B Bilgic^{1,2}, T Witzel^{1,2}, H Bhat³, LL Wald^{1,2}, K Setsompop^{1,2}

- 1 Martinos Center for Biomedical Imaging, Charlestown, MA
- 2 Harvard Medical School, Boston, MA
- 3 Siemens Medical Solutions, Charlestown, MA

Balanced SSFP

bSSFP has unique T2 / T1 contrast

inherent high SNR efficiency

fast imaging time: short TE & TR

Provides strong contrast between tissues with different T2 / T1 ratios

Cardiac [1]

(blood – myocardium contrast)

Angio [2]

(blood – surrounding tissue)

MSK [3]

(fat – muscle)

Neuro [4] nerves at skull base

(CSF – cranial nerve)

[4] JW Casselman et al Am Soc Neuroradiology 1993

^[1] DC Peters et al MRM 2002

^[2] NK Bangerter et al MRM 2011

^[3] GE Gold et al JMRI 2007

Phase-cycled bSSFP

- But suffers from banding artifacts due to sensitivity to B0 inhomogeneity
- Can be mitigated by phase-cycling:
 - multiple acquisitions with different phase increment btw successive RFs
 - this shifts location of banding artifacts

Phase-cycled bSSFP banding-free MIP =

- But suffers from banding artifacts due to sensitivity to B0 inhomogeneity
- Can be mitigated by phase-cycling:
 - multiple acquisitions with different phase increment btw successive RFs
 - this shifts location of banding artifacts
 - combine cycles with Max Intensity Projection (MIP)

Phase-cycled bSSFP

- Phase-cycling mitigates banding artifacts
- But increases scan time, counteracting inherent efficiency of bSSFP

- Parallel Imaging [1,2] and Simultaneous MultiSlice (SMS) [3,4] employ receiver sensitivity encoding to reduce scan time
- And have been deployed in phase-cycled bSSFP for up to 4-fold acceleration [5,6]

- [1] KP Pruessmann et al MRM 1999
- [2] MA Griswold et al MRM 2002
- [3] DJ Larkman et al JMRI 2001
- [4] FA Breuer et al MRM 2005
- [5] D Stab et al MRM 2011
- [6] Y Wang et al MRM 2015

Joint Recon for Phase-cycled bSSFP

In this work, we propose to **jointly recon phase-cycled images**

- We introduce Joint GRAPPA:
 - recons all phase-cycles simultaneously to exploit their mutual info
 - fit GRAPPA kernels jointly across coils and phase-cycles
 - * analogous to k-t in dynamic imaging [1] and virtual coil in diffusion imaging [2]

Joint Recon for Phase-cycled bSSFP

In this work, we propose to **jointly recon phase-cycled images**

- We introduce Joint GRAPPA:
 - by creating virtual coils out of the phase-cycles,
 converts banding artifacts into useful, additional spatial encoding
 - reduction in g-factor noise amplification is > 1.5-fold relative to GRAPPA
 - i.e. SNR improvement is similar to 2 averages of GRAPPA recon

GRAPPA Recon

R=2 acceleration, ignoring coil and readout axes

Proposed: Joint GRAPPA

R=2 acceleration, ignoring coil and readout axes

Proposed: Joint GRAPPA

- R=2 acceleration, ignoring coil and readout axes
- Staggered sampling for complementary k-space info:

Data Acquisition @ 3T

1. Breath-hold abdominal imaging:

• 5 mm thick slice, four cycles $\{0, \pi/2, \pi, 3\pi/2\}$

 \bullet FOV = 380×380 mm², mtx = 160×160

 \star TR/TE = 3.3/1.54 ms, 34-chan

2. Neuroimaging: 2D

4.5 mm thick slice, four cycles

 \bullet FOV = 240×240 mm², mtx = 160×160

 \star TR/TE = 3.37/1.57 ms, 32-chan

3. Neuroimaging: SMS

- 8 slices acquired separately, then collapsed
- FOV/4 slice shift

Data Reconstruction @ 3T

GCC coil compression to 12 channels [1]

Kernels estimated with Tikhonov regularization from 32 ACS lines

Regularization and kernel sizes optimized for best RMSE

G-factor from 300 Monte-Carlo iterations [2]

Abdominal 2D acquisition four cycles, Acceleration R=6

Abdominal 2D acquisition

four cycles, Acceleration R=6

Abdominal 2D acquisition

four cycles, Acceleration R=6

RMSE reduced 25%

G_{max} reduced 1.6-fold

G_{avg} reduced 1.6-fold

SNR improvement is
>2 averages of GRAPPA

four cycles, Acceleration R=6 GRAPPA

G_{avg}=2.88
G_{max}=6.04

four cycles, Acceleration R=6
Joint GRAPPA

G_{avg}=1.53 G_{max}=2.72

four cycles, Acceleration R=6 Joint GRAPPA GRAPPA

RMSE reduced 47%

G_{max} reduced 2.2-fold

G_{avg} reduced 1.9-fold

SNR improvement is
>2 averages of GRAPPA

four cycles, Acceleration R=6 Joint GRAPPA GRAPPA

phase cycles:

phase cycles:

Simultaneous MultiSlice bSSFP

SMS: simultaneously excite and encode multiple slices

Simultaneous MultiSlice bSSFP

- SMS: simultaneously excite and encode multiple slices
- Incur FOV shift across slices to improve parallel imaging

Simultaneous MultiSlice bSSFP

- SMS: simultaneously excite and encode multiple slices
- Incur FOV shift across slices to improve parallel imaging

FOV/2 slice shift also causes off-resonance shift by π

Simultaneous MultiSlice bSSFP @ MultiBand=8

At MultiBand=8, each collapsed slice has contribution from four phase-cycles:

Simultaneous MultiSlice bSSFP @ MultiBand=8

At MultiBand=8, each collapsed slice has contribution from four phase-cycles:

Simultaneous MultiSlice bSSFP @ MultiBand=8

- At MultiBand=8, each collapsed slice has contribution from four phase-cycles
- After unaliasing collapsed slices and shifting slices back, apply MIP combination:

MIP combination

Neuro SMS acquisition

four cycles, MultiBand = 8

Split Slice GRAPPA

1/g-factor

Neuro SMS acquisition

four cycles, MultiBand = 8

1/g-factor

Neuro SMS acquisition

four cycles, MultiBand = 8

Joint Slice GRAPPA

1/g-factor

RMSE reduced 30%

G_{max} reduced 3.5-fold

G_{avg} reduced 1.5-fold

SNR improvement is~2 averages of GRAPPA

Conclusion

- Joint GRAPPA improves parallel imaging for phase-cycled bSSFP, with substantial reduction in noise amplification and recon error
- This allows high acceleration to mitigate scan time burden of phase-cycling

Limitations include:

- Cycles need to be registered for joint recon gating, breath-hold
- No of kernels scale with (no of cycles)²
 → smaller no of GCC channels

Extension:

Compressed Sensing with joint regularization over phase-cycles

Thanks!

Questions / Comments:

berkin@nmr.mgh.harvard.edu

martinos.org/~berkin

Support: NIH R24 MH106096

R01 EB020613

R01 EB017337

U01 HD087211