QSM Software Demo: 2016 Reconstruction Challenge

martinos.org/~berkin qsm.rocks

Declaration of Financial Interests or Relationships

Speaker Name: Berkin Bilgic

I have the following financial interest or relationship(s) to disclose with regard to the subject matter of this presentation:

- Licensing agreement with Samsung
- Research support from Siemens

Recon Challenge

- Showcase QSM Recon Challenge 2016
- Data available at

qsm.rocks

 Includes input phase, ground truth QSM, evaluation metrics, simple dipole inversion methods for benchmarking

Recon Challenge: Goals

Goals:

- test ability of existing algorithms to recover susceptibility from in vivo phase data
- 2. serve as a common dataset for testing and benchmarking future algorithms
- disseminate the results and lessons learned in a participant-driven paper-> in revision

Goals of this demo

Challenge toolbox did not include the phase processing pipeline, only raw and tissue phase images

Goals of this demo

- Challenge toolbox did not include the phase processing pipeline, only raw and tissue phase images
- Goals of this software demo:
 - 1. bridge this gap by starting from raw, wrapped phase and go through all the processing steps that went into the Challenge
 - serve as a simple, stand-alone toolbox that could be a starting point for QSM recon in clinical and research studies
- Software will be available at:

martinos.org/~berkin/qsm_demo.zip

Magnitude transversal orientation

Magnitude: BET brain mask [1]

1. SM Smith HBM'02

Raw phase

 π π

Laplacian unwrapping [2]: STI Suite

2. W Li et al NIMG'11

 -2π 2π

 Roemer coil combination fails to remove B1+ phase and includes some contribution from B1- of the body coil

Laplacian Boundary Value (LBV) background removal [3]: MEDI Toolbox

in ppm, normalized by $(\gamma \cdot TE \cdot B_0)$

3. D Zhou et al NMR in Biomed'14

-0.05ppm 0.05ppm

To mitigate this transmit phase, fit and subtract 3D polynomial

Input phase presented to the contestants

-0.05ppm 0.05ppm

Removed polynomial fit

-0.05ppm 0.05ppm

- compute inverse kernel by truncating small values in the inversion
- some noise amplification and dipole artifacts present
- avoids spatial smoothing

QSM: Truncated K-space Division (TKD) [4]

-0.10ppm 0.14ppm

4. S Wharton et al MRM'10 K Shmueli et al MRM'09

- dipole inversion with smooth image gradients
- dipole artifacts mitigated at the cost of over smoothing

QSM: Closed-form L2 regularization [5]

RMSE=66%

5. B Bilgic et al JMRI'14

-0.10ppm 0.14ppm

- nonlinear solver using total generalized variation
- fast version of nonlinear-MEDI
- good trade-off between dipole artifact mitigation and smoothing
- uses magnitude image for noise weighting

QSM: FANSI [6]

-0.10ppm 0.14ppm

6. C Milovic et al ISMRM'17 Monday @ 16:15 #3669 Computer 103

<u>qsm.rocks</u>

QSM: COSMOS [7] from 12 orientations

7. T Liu et al MRM'09

-0.10ppm 0.14ppm

Thanks!

Questions / Comments:

berkin@nmr.mgh.harvard.edu

martinos.org/~berkin