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SynopsisSynopsis
We propose a wave-encoded model-based deep learning (wave-MoDL) strategy forWe propose a wave-encoded model-based deep learning (wave-MoDL) strategy for
simultaneous image reconstruction and segmentation.  We use CNN-basedsimultaneous image reconstruction and segmentation.  We use CNN-based
regularizers in both k-  and image-space to employ features in both domains andregularizers in both k-  and image-space to employ features in both domains and
successful ly incorporated wave-encoding strategy into MoDL reconstruction.successful ly incorporated wave-encoding strategy into MoDL reconstruction.
Wave-MoDL enables RWave-MoDL enables R xRxR =4x4-fold accelerated 3D imaging using a 32-channel=4x4-fold accelerated 3D imaging using a 32-channel
array while reducing NRMSE by 1.45-fold compared to wave-CAIPI .  Further,  wearray while reducing NRMSE by 1.45-fold compared to wave-CAIPI .  Further,  we
jointly train wave-MoDL and a U-net for simultaneous reconstruction andjointly train wave-MoDL and a U-net for simultaneous reconstruction and
segmentation to get addit ional  gain.segmentation to get addit ional  gain.

IntroductionIntroduction
Recently developed model-based deep learning (MoDL) improves image reconstruction by

incorporating a convolutional neural network (CNN) into parallel imaging forward model to help

denoise and unalias undersampled data . Wave-controlled aliasing in parallel imaging (wave-CAIPI)

employs extra sinusoidal gradient modulations during the readout to harness coil sensitivity

variations in all three-dimensions and achieve higher accelerations . Wave-encoding strategy was

successfully combined with the variational network to provide high-quality images at high

acceleration . In this abstract, we propose wave-encoded (wave-) MoDL and train it jointly with a

U-net for simultaneous image reconstruction and segmentation. We incorporated wave trajectory

into MoDL reconstruction to better utilize sensitivity encoding. CNNs in both k- and image-space

were used to improve the reconstruction by employing features in both domains . Further, we take

advantage of multi-task learning for joint reconstruction and segmentation, where recent studies

reported that training multiple tasks improves the performance of each task .

MethodsMethods
Figure 1a shows the proposed network architecture for joint reconstruction and segmentation with

wave-MoDL and U-net. Both mean square error (MSE) and categorical cross entropy (CCE) losses

were used to train the network. Figure 1b shows the cartesian- and proposed wave-encodings in the

MoDL network. The reconstruction of standard wave-CAIPI is described as follows,

where  is the reconstructed image,  is the subsampling mask,  is the wave point spread

function in the k -y-z hybrid domain,  is the coil sensitivity map, and  is the subsampled image,

respectively. We used two denoising networks in k- and image-space for wave-MoDL as follows .

where  and  represents residual CNN networks in the k- and image-space, respectively. We

used the alternating minimization-based solution as described in (1,6), by which the network is

unrolled as shown in Figure 1a. 

To train the network, we used the Calgary-Campinas public dataset  and the Human connectome

project (HCP) dataset. These datasets include 12-channel GRE images for 67 subjects at 1mm-iso

resolution, and 32-channel MPRAGE images for 50 subjects at 0.8mm-iso resolution, respectively.

70%, 15%, and 15% of the subjects in each dataset were used for training, validating, and testing the

network, respectively. BART and FREESURFER were used to estimate coil-sensitivity maps and
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Figure 1.  a.  F igure 1.  a.  the proposed

network architecture for joint

MRI reconstruction and

segmentation with model-based

deep learning and U-net. b. b.  the

reconstruction scheme using

model-based deep learning for

cartesian and wave-encodings.

Figure 2.  Figure 2.  MoDL reconstruction

at R =4. MoDL (i), (k), and (ki)

represent MoDL with CNN

regularizers in the image-space,

k-space, and both k- and image-

space, respectively.

y

https://index.mirasmart.com/ISMRM2021/PDFfiles/images/4431/ISMRM2021-004431_Fig1.png
https://index.mirasmart.com/ISMRM2021/PDFfiles/images/4431/ISMRM2021-004431_Fig2.png


1/6/22, 1:37 PM

Page 2 of 3https://index.mirasmart.com/ISMRM2021/PDFfiles/1982.html

ground-truth segmentation labels . We aimed to identify four classes, cortical gray matter (GM

CTX), subcortical gray matter (GM SUB), white matter (WM), and background (BG). Quadro RTX 5000

was used to train the network. We applied 8-cycle cosine and sine wave-encoding with a maximum

gradient strength of 8mT/m, at 200Hz/pixel bandwidth. Example data and code can be found at

‘https://anonymous.4open.science/r/96c9ea60-69b6-4931-8e6a-72a1094626ee’

ResultsResults
-  Model-based Deep Learning reconstruction with CNNs in k-  and image-space- Model-based Deep Learning reconstruction with CNNs in k-  and image-space
Figure 2 shows MoDL reconstruction at R =4 with 12-channel Calgary-Campinas data. MoDL (i), (k),

and (ki) represent MoDL with CNN architecture in the image-space, k-space, and both k- and image-

space, respectively. For a fair comparison, we used 150K network parameters for all cases; MoDL (i)

and (k) have 64 glters in a CNN with 5 layers and MoDL (ki) has 45 glters in each of the two networks

with 5 layers. We observed that CNN regularizers in the k-space provide a signigcant gain for

reconstruction. Using two denoisers in the k- and image-space further reduced NRMSE to 10.77%. 

-  Wave encoded model-based deep learning network (wave-MoDL)-  Wave encoded model-based deep learning network (wave-MoDL)
Figure 3 shows the MoDL and wave-MoDL reconstructions at R xR =3x3 on 12-channel Calgary-

Campinas data. We used two CNN regularizers in the k- and image-space. SENSE failed to

reconstruct clean images due to high acceleration in this 12-channel dataset. MoDL improved the

images but still suhered from noise ampligcation and folding artifacts. Wave-CAIPI signigcantly

improved the images by reducing NRMSE of SENSE by 2.65-fold. Wave-MoDL further improved the

reconstruction and reduced NRMSE to 9.66%.

-  Joint image reconstruction and segmentation- Joint image reconstruction and segmentation
Figure 4 shows joint reconstruction and segmentation with wave-MoDL and U-net on 12-channel

Calgary-Campinas data. Using wave-CAIPI images directly as an input to a pre-trained U-net shows

poor performance due to noise ampligcation in the reconstructed images. Combining separately

trained wave-MoDL and U-net shows better segmentation results thanks to improved

reconstruction. Joint reconstruction and segmentation provided better results on the segmentation

task compared with the combination of the separately trained wave-MoDL and U-net. 

-  High accelerated wave-MoDL on 32-channel HCP data- High accelerated wave-MoDL on 32-channel HCP data
We used wave-MoDL to reconstruct R xR =4x4-fold accelerated high-resolution HCP dataset

acquired with 32-channel array. SENSE and cartesian-MoDL suhered from noise ampligcation and

artifacts. Wave-CAIPI could signigcantly improve the results, however lacked SNR at this high under-

sampling rate. Wave-MoDL mitigated the noise ampligcation and reduced NRMSE to 15.71%.

Discussion & ConclusionDiscussion & Conclusion
We introduced a joint reconstruction and segmentation strategy with wave-MoDL and U-net.

Incorporating wave-encoding markedly improved image quality, thus allowing us to push the

acceleration to 16-fold on the HCP dataset. Wave-MoDL enabled a 47-second, whole-brain MPRAGE

acquisition at 0.8mm-iso resolution with high gdelity. 

We separated the 3D data into slice groups and trained on sets of aliasing slices. Though this

approach is not able to use the information from adjacent slices, it signigcantly reduces the memory

footprint and facilitates training with high channel count data.
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