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Diffusion spectrum imaging offers detailed information on com-

plex distributions of intravoxel fiber orientations at the expense
of extremely long imaging times (~1 h). Recent work by Menzel

et al. demonstrated successful recovery of diffusion probability
density functions from sub-Nyquist sampled q-space by
imposing sparsity constraints on the probability density func-

tions under wavelet and total variation transforms. As the per-
formance of compressed sensing reconstruction depends

strongly on the level of sparsity in the selected transform
space, a dictionary specifically tailored for diffusion probability
density functions can yield higher fidelity results. To our knowl-

edge, this work is the first application of adaptive dictionaries
in diffusion spectrum imaging, whereby we reduce the scan
time of whole brain diffusion spectrum imaging acquisition

from 50 to 17 min while retaining high image quality. In vivo
experiments were conducted with the 3T Connectome MRI.

The root-mean-square error of the reconstructed ‘‘missing’’ dif-
fusion images were calculated by comparing them to a gold
standard dataset (obtained from acquiring 10 averages of dif-

fusion images in these missing directions). The root-mean-
square error from the proposed reconstruction method is up to

two times lower than that of Menzel et al.’s method and is
actually comparable to that of the fully-sampled 50 minute
scan. Comparison of tractography solutions in 18 major white-

matter pathways also indicated good agreement between the
fully-sampled and 3-fold accelerated reconstructions. Further,

we demonstrate that a dictionary trained using probability den-
sity functions from a single slice of a particular subject gener-
alizes well to other slices from the same subject, as well as to

slices from other subjects. Magn Reson Med 000:000–000,
2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Diffusion weighted MR imaging is a widely used method
to study white matter structures of the brain. Diffusion
tensor imaging is an established diffusion weighted
imaging method, which models the diffusion as a univar-
iate Gaussian distribution (1). One limitation of this
model arises in the presence of fiber crossings and this
can be addressed by using a more involved imaging
method (2,3). Diffusion spectrum imaging (DSI) results
in magnitude representation of the full q-space and
yields a complete description of the diffusion probability
density function (PDF) (4,5). Although DSI is capable of
resolving complex distributions of intravoxel fiber orien-
tations, full q-space coverage comes at the expense of
substantially long scan times (�1 h).

Compressed sensing (CS) comprises algorithms that
recover data from undersampled acquisitions by impos-
ing sparsity or compressibility assumptions on the recon-
structed images (6). In the domain of DSI, acceleration
with CS was successfully demonstrated by Menzel et al.
(7) by imposing wavelet and total variation (TV) penal-
ties in the PDF space. Up to an undersampling factor of
4 in q-space, it was reported that essential diffusion
properties such as orientation distribution function, dif-
fusion coefficient, and kurtosis were preserved (7). A
recent study focused on the problem of finding the best
wavelet basis to represent the diffusion PDF by compar-
ing various wavelet transforms (8).

The performance of CS recovery depends on the level
of sparsity of the signal in the selected transform do-
main, as well as the incoherence of the aliasing artifacts
in the transform domain and the amount of acceleration
in the sampling space (6). Although prespecified trans-
formations such as wavelets and spatial gradients yield
sparse signal representation, tailoring the sparsifying

transform based on the characteristics of the particular

signal type may offer even sparser results. K-SVD is an

algorithm that designs a dictionary that achieves maxi-

mally sparse representation of the input training data (9).

The benefit of using data-driven, adaptive dictionaries

trained with K-SVD was also demonstrated in CS recon-

struction of structural MR imaging (10,11).
In this work, we use the K-SVD algorithm to design a

sparsifying transform that yields a signal representation
with increased level of sparsity. Coupling this adaptive
dictionary with the FOCal Underdetermined System
Solver (FOCUSS) algorithm (12), we obtain a parameter-
free CS algorithm. With 3-fold undersampling of q-space,
we demonstrate in vivo up to 2-fold reduced PDF
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reconstruction errors relative to our implementation of
the CS algorithm that uses wavelets and variational pen-
alties by Menzel et al. (7). At higher acceleration factors
of 5 and 9, we still demonstrate up to 1.8-fold and 1.6-
fold reduced errors relative to wavelet and TV recon-
struction at the lower acceleration factor of 3. For addi-
tional validation, the root-mean-square error (RMSE) of
the reconstructed ‘‘missing’’ diffusion images were calcu-
lated by comparing them to a gold standard dataset
obtained with 10 averages. In this case, dictionary-based
reconstructions were seen to be comparable to the fully-
sampled one average data. For further validation, average

fractional anisotropy (FA) and tract volume metrics

obtained from 18 major white-matter pathways were com-
pared between the fully-sampled and 3-fold accelerated

dictionary reconstructions to yield good agreement. In

addition, we show that a dictionary trained on data from a

particular subject generalizes well to reconstruction of

another subject’s data, still yielding up to 2-fold reduced

reconstruction errors relative to using prespecified trans-

forms. Hence, application of the proposed method might

reduce a typical 50-minute DSI scan to 17 minutes (upon

3 � acceleration) while retaining high image quality. In

addition, we also investigate using a simple l1-norm pen-

alty in the PDF space with the FOCUSS algorithm and

show that this approach gives comparable results with the

more involved wavelet- and TV-based reconstruction by

Menzel et al. (7), while being computationally more

efficient.

THEORY

CS Recovery with Prespecified Transforms

Letting p [ CN represent the three-dimensional diffusion
PDF at a particular voxel as a column vector, and q [ CM

denote the corresponding undersampled q-space informa-
tion, CS recovery with wavelet and TV penalties aim to
solve the convex optimization problem at a single voxel,

minp|FVp� q|2
2 þ a � |Cp|1 þ b � TVðpÞ ½1�

where FV is the undersampled Fourier transform opera-
tor, C is a wavelet transform operator, TV(.) is the TV
penalty, and a and b are regularization parameters that
need to be determined. CS recovery is applied on a
voxel-by-voxel basis to reconstruct all brain voxels.

Training an Adaptive Transform with K-SVD

Given an ensemble P [ CN � L formed by concatenating L
example PDFs {pi}

L
i¼1 collected from a training dataset as

column vectors, the K-SVD algorithm (9) aims to find the
best possible dictionary for the sparse representation of
this dataset by solving,

minP;D

XL

i¼1
|xi|0 subject to |P� DX|2

F � e ½2�

where X is the matrix that contains the transform coeffi-
cient vectors {xi}

L
i¼1 as its columns, D is the adaptive dic-

tionary, e is a fixed constant that adjusts the data fidel-
ity, and |.|F is the Frobenius norm. The K-SVD works
iteratively, first by fixing D and finding an optimally

sparse X using orthogonal matching pursuit, then by
updating each column of D and the transform coeffi-
cients corresponding to this column to increase data
consistency.

CS Recovery with an Adaptive Transform using FOCUSS

The FOCUSS algorithm aims to find a sparse solution to
the underdetermined linear system FVDx ¼ q, where x is
the vector of transform coefficients in the transform
space defined by the dictionary D using the following
iterations,

For iteration number t ¼ 1,. . . T,

Wt
j;j ¼ diagðjxt

j j
1=2Þ ½3�

st ¼ argmins|s|
2
2 such that FVDW

ts ¼ q ½4�

xtþ1 ¼ Wtst ½5�

Here, Wt is a diagonal weighting matrix whose jth diago-
nal entry is denoted as Wt

j;j, x
t is the estimate of trans-

form coefficients at iteration t whose jth entry is xtj . The
final reconstruction in diffusion PDF space is obtained
via the mapping p ¼ DxT þ 1.

We note that it is possible to impose sparsity-inducing
l1 penalty directly on the PDF coefficients by taking D to
be the identity matrix I.

METHODS

Diffusion echo-planar imaging acquisitions were
obtained from three healthy volunteers (subjects A, B,
and C) using a novel 3T system (Magnetom Skyra Con-
nectom, Siemens Healthcare, Erlangen, Germany)
equipped with the AS302 ‘‘CONNECTOM’’ gradient with
Gmax ¼ 300 mT/m (here, we used Gmax ¼ 200 mT/m) and
Slew ¼ 200 T/m/s. A custom-built 64-channel radiofre-
quency head array (13) was used for reception with
imaging parameters of 2.3 mm isotropic voxel size, field
of view ¼ 220 � 220 � 130, matrix size ¼ 96 � 96 � 57,
bmax ¼ 8000 s/mm2, 514 directions full sphere q-space
sampling (corners of q-space were zero-padded as they
were not sampled) organized in a Cartesian grid with
interspersed b ¼ 0 images every 20 pulse repetition
times (for motion correction, 25 b ¼ 0 images in total),
in-plane acceleration ¼ 2 � (using GRAPPA algorithm),
pulse repetition time/echo time ¼ 5.4 s/60 ms, total
imaging time �50 min. In addition, at five q-space points
([1,1,0], [0,2, �1], [0,0,3], [0,4,0], and [5,0,0]) residing on
five different shells, 10 averages were collected for noise
quantification. The corresponding b-values for these five
points were 640, 1600, 2880, 5120, and 8000 s/mm2.
Eddy current related distortions were corrected using the
reversed polarity method (14). Motion correction (using
interspersed b ¼ 0) was performed using FLIRT (15)
with sinc interpolation.

Variable-density undersampling [using a power-law
density function (6)] with R ¼ 3 acceleration was applied
in q-space on a 12 � 12 � 12 grid. Three different adapt-
ive dictionaries were trained with data from slice 30 of
subjects A, B, and C. Reconstruction experiments were
applied on test slices that are different than the training
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slices. In particular, two reconstruction experiments
were performed. First, voxels in slice 40 of subject A
were retrospectively undersampled in q-space and recon-
structed using five different methods: wavelet þ TV
method of Menzel et al. (7), l1-regularized FOCUSS, and
Dictionary-FOCUSS with the three dictionaries trained
on three different subjects. Second, voxels in slice 25 of
subject B were retrospectively undersampled with the
same R ¼ 3 sampling pattern and again reconstructed
with wavelet þ TV, l1-FOCUSS, and the three diction-
aries trained on three different subjects. Slice 30 was
selected for training and slices 25 and 40 were chosen
for test based on their anatomical location, so that the
test slices would reside on lower and upper parts of the
brain, while the training slice was one of the middle sli-
ces. For Menzel et al.’s method, Haar wavelets in MAT-
LAB’s wavelet toolbox were used. The regularization pa-
rameters a and b in Eq. [1] were chosen by parameter
sweeping with values {10�4, 3 � 10�4, 10�3, 3 � 10�3} to
minimize the reconstruction error of 100 randomly
selected voxels in slice 40 of subject A. The optimal reg-
ularization parameters were found to be a ¼ 3 � 10�4 for
wavelet and b ¼ 10�4 for the TV term. By taking the
fully-sampled data as ground truth, the fidelity of the
five methods were compared using RMSE normalized by
the l2-norm of ground truth as the error metric both in
PDF domain and q-space.

As the fully-sampled data are corrupted by noise, com-
puting RMSEs relative to them will include contribu-
tions from both reconstruction errors and additive noise.
To address this, the additional 10 average data acquired
at the selected five q-space points were used. As a single
average full-brain DSI scan takes �50 min, it was not
practical to collect 10 averages for all of the under-
sampled q-space points. As such, we rely on both error
metrics, namely: the RMSE relative to one average fully-
sampled dataset and the RMSE relative to gold standard
data for five q-space points.

To compare the fully sampled and 3-fold accelerated
Dictionary-FOCUSS reconstructions in terms of tractogra-
phy solutions, streamline deterministic DSI tractography
on the two datasets was performed in trackvis (http://
trackvis.org) and 18 white-matter pathways were labeled.
The labeling was performed following the protocol
described in Ref. 16, where two regions of interest (ROIs)
are drawn for each pathway in parts of the anatomy that
the pathway is known to traverse. To eliminate variabili-
ty due to manual labeling in the two data sets and make
our comparison as unbiased as possible, the ROIs used
here were not drawn manually on the fully sampled and
3-fold accelerated data. Instead, we obtained the ROIs
from a different dataset of 33 healthy subjects, where we
had previously labeled the same pathways (17). We aver-
aged the respective ROIs from the 33 subjects in MNI
space (18) and mapped the average ROIs to the native
space of the fully sampled and R ¼ 3 datasets using
affine registration. In each dataset, we isolated the trac-
tography streamlines going through the respective ROIs
to identify the 18 pathways. A Matlab toolbox that repro-
duces some of the in vivo results is available at: http://
web.mit.edu/berkin/www/software.html

RESULTS

Figure 1 depicts the error of the different reconstruction
methods in the PDF domain for each voxel in slice 40 of
subject A. At R ¼ 3 acceleration, reconstruction error of
Menzel et al.’s method averaged over brain voxels in the
slice was 15.8%, while the error was 15.0% for l1-regu-
larized FOCUSS. Adaptive dictionary trained on subject
A yielded 7.8% error. Similarly, reconstruction with dic-
tionaries trained on PDFs of the other subjects B and C
returned 7.8 and 8.2% RMSE, respectively. At R ¼ 5,
Dictionary-FOCUSS returned 8.9, 8.9, and 9.3% error
with training on subjects A, B, and C, respectively. At R

FIG. 1. RMSE at each voxel in slice 40 of subject A upon R ¼ 3 acceleration and reconstruction with Menzel et al.’s method (a),
l1-FOCUSS (b), Dictionary-FOCUSS trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g), and (h) are obtained
at higher acceleration factor of R ¼ 5 with training on subjects A, B, and C, respectively. Results for the reconstructions at R ¼ 9 are
given in (i), (j) and (k). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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¼ 9, dictionary reconstruction with training on subjects
A, B, and C returned 10.0, 10.0, and 10.4% RMSE.

In Figure 2, reconstruction errors at R ¼ 3 on slice 25
of subject B are presented. In this case, Menzel et al.’s
method yielded 17.5% average RMSE, and l1-FOCUSS
had 17.3% error. Dictionary trained on slice 40 of subject
A returned 11.4% RMSE, whereas adaptive transforms
trained on subjects B and C had 11.4 and 11.8% error,
respectively. At a higher acceleration factor of R ¼ 5,
Dictionary-FOCUSS with training on subjects A, B, and

C returned 13.1, 13.3, and 13.5% error. At R ¼ 9, dic-
tionary reconstruction with training on subjects A, B,
and C yielded 14.2, 14.2, and 14.4% RMSE, respectively.

Figure 3 presents RMSEs obtained on various slices of
subject A using Dictionary- and l1-FOCUSS. Error bars
that show the variation of the reconstruction errors are
also included. RMSE maps on four selected slices are
plotted for comparison. The same analysis is carried out
on various slices of subject B, and the results are
depicted in Figure 4.

FIG. 2. RMSE at each voxel in slice 25 of subject B upon R ¼ 3 acceleration and reconstruction with Menzel et al.’s method (a),
l1-FOCUSS (b), Dictionary-FOCUSS trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g), and (h) are obtained
at higher acceleration factor of R ¼ 5 with training on subjects A, B, and C, respectively. Results for the reconstructions at R ¼ 9 are
given in (i), (j), and (k). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIG. 3. Mean and standard devi-
ation of RMSEs computed on
various slices of subject A using

l1- and Dictionary-FOCUSS
trained on subject B. Lower

panel depicts RMSE maps for
four selected slices. [Color figure
can be viewed in the online

issue, which is available at
wileyonlinelibrary.com.]
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Reconstruction errors in q-space images of subject A
obtained with wavelet þ TV, l1-FOCUSS, and Diction-
ary-FOCUSS trained on the three subjects for the under-
sampled q-space directions are plotted in Figure 5. For

two particular diffusion directions [0,4,0] and [5,0,0], q-
space reconstructions obtained with the three methods
are also presented. In Figure 5a, q-space images obtained
with wavelet þ TV, l1-FOCUSS, and Dictionary-FOCUSS

FIG. 4. Mean and standard devi-
ation of RMSEs computed on

various slices of subject B using
l1- and Dictionary-FOCUSS
trained on subject A. Lower

panel depicts RMSE maps for
four selected slices. [Color figure

can be viewed in the online
issue, which is available at
wileyonlinelibrary.com.]

FIG. 5. Top panel shows RMSEs in ‘‘missing’’ q-space directions that are estimated with wavelet þ TV, l1-FOCUSS and Dictionary-
FOCUSS with training on subjects A, B, and C at R ¼ 3. q-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for compar-

ison of the reconstruction methods. In panels (b) and (d), reconstruction errors of wavelet þ TV, l1-FOCUSS and dictionary reconstruc-
tions relative to the 10 average fully-sampled image at directions [5,0,0] and [0,4,0] are given. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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(with training on subject B) are compared with the 10 av-
erage fully sampled image at [5,0,0]. Figure 5b presents
the error images relative to the 10 average data for the
three methods. Figures 5c,d depict the same analysis at
direction [0,4,0].

In an attempt to quantify the noise in q-space and sep-
arate it from CS reconstruction error, we take the 10 av-
erage data acquired at five q-space directions as ground
truth and compute the RMSEs relative to them. Figure 6
shows the error plots for the one average fully sampled
data, wavelet þ TV, l1-FOCUSS, and Dictionary-FOCUSS
reconstructions relative to the 10 average data for slices
from subjects A and B.

Figure 7a,b show tractography results of subject A for
the labeled white-matter pathways in the fully-sampled
and 3-fold accelerated Dictionary-FOCUSS reconstruc-
tions. Figure 7c,d show plots of the average FA and vol-
ume of each pathway for the 18 white-matter pathways,
as calculated from the two reconstructions.

DISCUSSION

This work presented the first application of adaptive
transforms to voxel-by-voxel CS reconstruction of under-
sampled q-space data. Relative to reconstruction with
prespecified transforms, that is, wavelet and TV, the pro-
posed algorithm has up to two times reduced error in

the PDF domain at the same acceleration factor (R ¼ 3),
while requiring no regularization parameter tuning.
When the undersampling ratio was increased to R ¼ 5
and even up to R ¼ 9, the proposed method still demon-
strated substantial improvement relative to using prespe-
cified transforms at a lower acceleration factor of R ¼ 3
(Figs. 1 and 2). As demonstrated, a dictionary trained
with PDFs from a single slice of a particular subject gen-
eralizes to other slices of the same subject, as well as to
different subjects. However, further tests are needed to
see if dictionaries can generalize across healthy and
patient populations, or across age groups.

As the acquired one average DSI data is corrupted by
noise (especially in the outer shells), it is desired to
obtain noise-free data for more reliable computation of
CS reconstruction errors. Because even the one average
full-shell acquisition takes �50 min, it is practically not
possible to collect multiple-average data at all q-space
points. To address this, one representative q-space sam-
ple at each shell was collected with 10 averages to serve
as ‘‘(approximately) noise-free’’ data. When the noise-free
data were taken to be ground truth, the dictionary recon-
struction with 3-fold undersampling was comparable to
the fully sampled one average data for both subjects (Fig.
6).

RMSE in Figure 2 was overall higher than in Figure 1.
A possible explanation is the inherently lower signal-
noise-ratio (SNR) in the lower axial slice, particularly in
the center area of the brain which is further away from
the receive coils. In particular, the error is higher in the
central region of the image where the signal-noise-ratio
is expected to be lowest. As the noisy one average data-
sets were taken to be the reference in RMSE computa-
tions in Figures 1 and 2, we expect the errors to be influ-
enced by noise in these lower signal-noise-ratio regions.
As seen in Figures 1 and 2, wavelet þ TV and l1-
FOCUSS tend to yield larger error in the white matter,
where the information is more critical for fiber tracking.
Error maps from the dictionary reconstruction are more
homogenous across white and gray matter, especially
results on Figure 2 resemble signal-noise-ratio maps
where the middle of the brain is further away from the
receive coils. As Figure 6 demonstrates, dictionary recon-
struction has a certain degree of denoising property, as it
yields lower RMSE than the one average data relative to
the 10 average data. This might be one possible explana-
tion why the RMSE is relatively higher in the middle of
the brain, which should be explored in future
investigation.

As seen in Figure 5, wavelet and TV penalized recon-
struction and l1-FOCUSS yield especially poor quality
results in estimating the high q-space samples. In partic-
ular, as depicted in Figure 5a,b, these CS methods tend
to underestimate the high q-space content. However, this
is not a simple scaling problem, as they yield either flat
(wavelet þ TV) or grainy (l1-FOCUSS) results. Because
wavelet þ TV reconstruction imposes piece-wise
smoothness assumption in CS reconstruction, it leads to
loss of high frequency content. In the context of DSI, this
corresponds to attenuated high q-space information (flat,
underestimated outer shell). l1-penalized reconstruction
encourages small number of nonzero coefficients, which

FIG. 6. Panel on top depicts RMSEs of wavelet þ TV, l1-FOCUSS

and Dictionary-FOCUSS at R ¼ 3 and fully-sampled 1 average
data computed in 5 q-space locations relative to the 10 average

data for subject A. Panel on the bottom shows the same compari-
son for the slice belonging to subject B. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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is seen to be insufficient to model the diffusion PDFs.
This also leads to underestimated high q-space content,
but as there is no smoothness constraint in PDF domain,
the reconstructed q-space is not flat. The RMSE plot in
Figure 5 also demonstrates that wavelet þ TV and l1-
FOCUSS results are comparable to the adaptive recon-
struction at lower q-space (Fig. 5c,d), and the difference
becomes more pronounced as |q| increases.

Visual inspection of the tractography solutions from
the fully sampled and 3-fold accelerated Dictionary-
FOCUSS datasets (Fig. 7a,b) showed that the white-mat-
ter pathways reconstructed from the two acquisitions
were very similar. When comparing average FA over
each pathway, as calculated from the two reconstruc-
tions, there are two potential sources of differences: the
tractography streamlines could be different, visiting dif-
ferent voxels in the brain for each dataset and/or the ten-
sor, from which the FA value is calculated, could be dif-
ferent at same voxel for each dataset. However, we found
good agreement between the average FA values in the
fully sampled and 3-fold accelerated reconstructions
(Fig. 7c,d). Some differences are to be expected in
weaker pathways that only consist of very few stream-
lines and thus are more sensitive to noise and have

lower test-retest reliability than the stronger pathways.
This was the case particularly for the right inferior longi-
tudinal fasciculus, which did not have any streamlines
in the fully sampled dataset (Fig. 7d). Therefore, it was
not possible to extract an average FA value for the right
inferior longitudinal fasciculus from the fully sampled
data. Apart from this pathway, the mean difference
between the average FA values in the fully sampled and
3-fold accelerated data, as a percentage of the value in
the fully sampled data, was 3%. For the volume esti-
mates, the mean error was 16%. It is possible that even
more stable FA and volume measurements could be
obtained by manual labeling of the paths directly on
each dataset, instead of using the average ROIs. This is
because the averaging of ROIs in MNI space is suscepti-
ble to misregistration errors, leading to average ROIs that
are typically much larger than the individual ROIs than
a rater would draw directly on the images. Thus, the
bundles that we obtained with the average ROIs are
more likely to contain stray streamlines that would be
eliminated in a careful individual manual labeling, lead-
ing to less noisy volume and FA estimates. However, we
used the average ROIs here to avoid introducing variabil-
ity due to manual labeling.

FIG. 7. Axial view of white-mat-
ter pathways labeled from

streamline DSI tractography in
fully-sampled data (a) and Dic-
tionary-FOCUSS reconstruction

at R ¼ 3 (b). The following are
visible in this view: corpus cal-

losum—forceps minor (FMIN),
corpus callosum—forceps major
(FMAJ), anterior thalamic radia-

tions (ATR), cingulum—cingulate
gyrus bundle (CCG), superior lon-

gitudinal fasciculus—parietal
bundle (SLFP), and the superior
endings of the corticospinal tract

(CST). Average FA (c) and volume
in number of voxels (d) for each
of the 18 labeled pathways, as

obtained from the fully-sampled
(R ¼ 1, green) and Dictionary-

FOCUSS reconstructed with
3-fold undersampling (R ¼ 3, yel-
low) datasets belonging to subject

A. Intrahemispheric pathways are
indicated by ‘‘L-’’ (left) or ‘‘R-’’

(right). The pathways are: corpus
callosum—forceps major (FMAJ),
corpus callosum—forceps minor

(FMIN), anterior thalamic
radiation (ATR), cingulum—angu-

lar (infracallosal) bundle (CAB),
cingulum—cingulate gyrus (supra-
callosal) bundle (CCG), corticospi-

nal tract (CST), inferior
longitudinal fasciculus (ILF), supe-
rior longitudinal fasciculus—parie-

tal bundle (SLFP), superior
longitudinal fasciculus—temporal

bundle (SLFT), uncinate fasciculus
(UNC).
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In a previous study, we evaluated the intrarater and
inter-rater reliability of the manual labeling procedure by
performing manual labeling several times on the same
dataset. We found the average distance between path-
ways labeled by the same and different raters to be,
respectively, in the order of 1 voxel and 2 voxels (17). In
this study, we found that the distance between the path-
ways obtained from the fully sampled and R ¼ 3 datasets
were comparable (median distance: 2.37 mm, mean dis-
tance: 2.74 mm with acquisition voxel size of 2.3 mm
isotropic). Further investigation with test-retest scans
is warranted to determine how the differences between
the fully sampled and 3-fold undersampled results
compare to the test-retest reliability of each type of
reconstruction.

In this study, fully sampled q-space data were col-
lected for comparison with the CS reconstruction meth-
ods. With the fully sampled dataset, it was simple to
apply the reverse polarity approach (14) to get good eddy
current correction. We note that in a real random under-
sampling case where reverse pairs are not present, such
eddy current correction method will not be applicable.
However, various approaches exist in performing eddy
current correction, such as linearly fitting the eddy-cur-
rent distortions parameters (translation, scaling, shear-
ing) using the available data and then estimating the
transformation for any given q-space data.

In our implementation, per voxel processing time of l1-
FOCUSS was 0.6 seconds, whereas this was 12 seconds
for Dictionary-FOCUSS and 27 seconds for wavelet þ TV
method on a workstation with 12GB memory and six
processors. Hence, full-brain reconstruction using the l1-
FOCUSS algorithm would still take days. Because each
voxel can be processed independently, parallel imple-
mentation is likely to be a significant source of perform-
ance gain. Dictionary training step (for subject A, using
3200 voxels inside the brain mask from a single slice)
took 12 minutes. An additional research direction is to
evaluate the change in reconstruction quality when mul-
tiple slices are used for training. Increased processing
times due to using a larger dictionary may become a
practical concern in this case.

The proposed CS acquisition/reconstruction can be
combined with other techniques to further reduce the ac-
quisition time. In particular, combining the proposed
method with the Blipped-CAIPI Simultaneous MultiSlice
acquisition (19) could reduce a 50-minute DSI scan to
5.5 minutes upon 9-fold acceleration (3�3 CS-Simultane-
ous MultiSlice).

CONCLUSION

By using a data-driven transform specifically tailored for
sparse representation of diffusion PDFs, up to 2-fold
reduction in reconstruction errors were obtained relative
to using either prespecified wavelet and gradient trans-
forms, or l1-norm penalty. Further, it was demonstrated

that an adaptive dictionary trained on a particular sub-
ject generalizes well to other subjects, still yielding sig-
nificant benefits in CS reconstruction performance.
Coupled with the parameter-free FOCUSS algorithm, the
proposed method can help accelerate DSI scans in the
clinical domain.
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