Joint Reconstruction for Phase-Cycled Balanced SSFP

Berkin Bilgic^{1,2}, Thomas Witzel^{1,2}, Himanshu Bhat³, Lawrence L. Wald^{1,2}, Kawin Setsompop^{1,2}

¹Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; ²Harvard Medical School, Boston, MA, USA; ³Siemens Medical Solutions, Charlestown, MA, USA.

INTRODUCTION: Balanced steady state free precession (bSSFP) is an SNR-efficient technique that has found widespread use in cardiac, abdominal and brain imaging. Despite being a rapid sequence with unique T_2/T_1 contrast, it suffers from banding artifacts due to its sensitivity to B_0 inhomogeneity. To mitigate these artifacts, multiple images at different off-resonance frequencies can be acquired and combined with maximum intensity projection (MIP). Such phase-cycled acquisition increases the total scan time, counteracting the inherent efficiency of bSSFP. Parallel imaging [1] and simultaneous multislice (SMS) [2]

employ sensitivity encoding to reduce the scan time, and have been recently deployed in phase-cycled bSSFP [3]. Herein, we propose to jointly reconstruct the phase-cycled images, and report up to 3-fold decrease in maximum g-factor and 47% reduction in reconstruction error. This is achieved by GRAPPA kernels [1] that are fit jointly across channels and phase-cycles, analogous to *k*-*t* and virtual coil approaches tailored for dynamic [4] and diffusion imaging [5].

METHODS: We propose <u>Joint GRAPPA</u>, which reconstructs all phase-cycles simultaneously to exploit their mutual information. This creates virtual coils by stacking the phase-cycles along the channel axis, where all coils and all cycles contribute to the reconstruction of a particular channel. Similar to *k*-*t* acquisition, the sampling pattern is shifted across the cycles to provide complementary k-space coverage. By creating virtual coils out of the phase-cycles, <u>Joint GRAPPA</u> makes use of the intensity and phase modulations due to B₀ inhomogeneity, and converts these artifact sources into useful, additional spatial encoding.

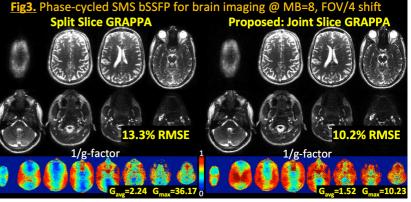
Fig1: A single abdominal slice of a volunteer was imaged with bSSFP using four cycles $(0, \pi/2, \pi, 3\pi/2)$ at 3T. Parameters were: FOV=380×380 mm², mtx=160×160, 5 mm slice, TR/TE=3.3/1.54 ms,

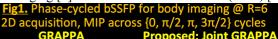
FA=37°, BW=822 Hz/px, 34-channel reception. For GRAPPA, each cycle was reconstructed separately with a 9×3 kernel. Joint GRAPPA used a 7×3 kernel and undersampling patterns were shifted by (0,3,0,3) samples for the four cycles to create complementary k-space information.

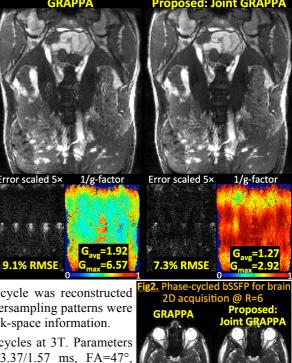
Fig2: A volunteer underwent a brain scan using 2D-bSSFP with four cycles at 3T. Parameters were: $FOV=240\times240 \text{ mm}^2$, $mtx=160\times160$, 4.5 mm slice, TR/TE=3.37/1.57 ms, $FA=47^\circ$, BW=845 Hz/px, 32-channel reception. Kernel sizes were 13×3 for GRAPPA and 9×3 for Joint GRAPPA. Undersampling patterns were staggered by (0,3,0,3) for joint reconstruction.

Fig3: Eight individual slices were acquired with four cycles using the same parameters in Fig2. These were shifted by multiples of FOV/4 and collapsed retrospectively. Since alternating the RF phase leads to a shift in both FOV and frequency [3], a collapsed slice group has contribution from all phase-cycles. As such, slices from the appropriate cycles were selected and shifted for this simulation. Slice- and Joint Slice-GRAPPA used 13×13 kernels with leak-block [6].

All experiments used 32 ACS lines, 12 GCC compressed channels [7] and 300 Monte-Carlo iterations for g-factor calculation [8]. Kernel sizes were selected for optimal RMSE.


RESULTS: <u>Fig1</u>: At R=6 acceleration, GRAPPA led to 9.1% RMSE in the MIP image while the error was 7.3% for Joint GRAPPA. The g-factors were $g_{avg}=1.92/1.27$ and $g_{max}=6.57/2.29$ for GRAPPA/Joint GRAPPA. <u>Fig2</u>: At R=6, the reconstruction errors were 10.0% and 6.8%. G-factor analysis revealed $g_{avg}=2.84/1.24$ and $g_{max}=11.24/4.90$. Bottom panel displays the individual cycles. <u>Fig3</u>: SMS reconstructions at MB=8 had 13.3% and 10.2% error. G-factor


statistics were $g_{avg}=2.24/1.52$ and $g_{max}=36.17/10.23$ for GRAPPA/Joint GRAPPA.


DISCUSSION: Joint GRAPPA employed the banding artifacts as additional spatial encoding to improve g_{max} by at least 2.3-fold relative to GRAPPA. The improvement in g_{avg} was at least 1.5-fold, i.e. the SNR improvement is similar to two averages of GRAPPA reconstruction. The proposed Joint GRAPPA could thus mitigate the scan time burden of phase-cycling while producing banding-free images.

REFERENCES: [1] M Griswold MRM'02; [2] DJ Larkman JMRI'01; [3] Y Wang MRM'15; [4]

F Huang MRM'05; [5] E Dai MRM'16; [6] SF Cauley MRM'14; [7] T Zhang MRM'13; [8] FA Breuer MRM'09.

1/g-factor

1/g-facto