LASER-POLARIZED 129Xe MAGNETIC RESONANCE SPECTROSCOPY AND IMAGING; THE DEVELOPMENT OF A METHOD FOR IN VIVO PERFUSION MEASUREMENT

Matthew S. Rosen

A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy (Physics) in The University of Michigan 2001

Doctoral Committee:

Professor Timothy E. Chupp, Chair
Assistant Professor Alberto G. Rojo
Professor Rudolf P. Thun
Associate Research Scientist Kevin P. Coulter
Assistant Research Scientist Scott D. Swanson
“A human person must put propriety and music first.”

Hsi-yu Chi, *The Journey to the West*
For my mother, Deborah M. Rosen
TABLE OF CONTENTS

DEDICATION..ii
ACKNOWLEDGEMENTS ...iii
PREFACE...v
LIST OF FIGURES ...ix
LIST OF TABLES..xix

CHAPTER:
1 Introduction ...1
2 Rb optical pumping and Rb-129Xe spin-exchange ...6
 2.1 Optical Pumping in Rb ..6
 2.1.1 Spin rotation collisions ...11
 2.1.2 Spin exchange collisions ...11
 2.1.3 Rb-Rb spin relaxation ...12
 2.1.4 Collisions with the cell walls ...13
 2.2 Spin Exchange Polarization of 129Xe ..15
 2.2.1 Relaxation due to magnetic-field inhomogeneties18
 2.2.2 Wall relaxation ..18
 2.3 Simulation Framework ..19
3 129Xe polarization and delivery system ..22
 3.1 Optical Pumping/Spin Exchange ...22
 3.1.1 Cell manufacture ...25
 3.1.2 Octadecyltrichlorosilane coatings ...27
 3.1.3 Optical pumping setup ...29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.4</td>
<td>OPSE cell design</td>
</tr>
<tr>
<td>3.1.5</td>
<td>OPSE operation and performance</td>
</tr>
<tr>
<td>3.1.6</td>
<td>Polarization calibration</td>
</tr>
<tr>
<td>3.2</td>
<td>Laser System and Optics</td>
</tr>
<tr>
<td>3.3</td>
<td>129Xe Transport Manifold</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Estimate of 129Xe transport losses</td>
</tr>
<tr>
<td>3.4</td>
<td>Polarized 129Xe Accumulation</td>
</tr>
<tr>
<td>3.5</td>
<td>Polarized 129Xe Gas Storage</td>
</tr>
<tr>
<td>3.6</td>
<td>Polarized 129Xe Delivery</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Operation</td>
</tr>
<tr>
<td>3.6.2</td>
<td>In vivo xenon delivery cycle timing</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Performance and calibration</td>
</tr>
<tr>
<td>3.7</td>
<td>Experimental Platform</td>
</tr>
<tr>
<td>3.7.1</td>
<td>RF probes</td>
</tr>
<tr>
<td>3.7.2</td>
<td>In vivo performance</td>
</tr>
<tr>
<td>3.8</td>
<td>Optimization and Operation</td>
</tr>
<tr>
<td>4</td>
<td>Distribution and dynamics of laser-polarized 129Xe magnetization in vivo</td>
</tr>
<tr>
<td>4.1</td>
<td>General Experimental Details</td>
</tr>
<tr>
<td>4.2</td>
<td>In Vivo 129Xe Spectroscopy</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Whole body spectroscopy</td>
</tr>
<tr>
<td>4.3</td>
<td>Dynamic Uptake of 129Xe Magnetization</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Time evolution of whole body spectra</td>
</tr>
<tr>
<td>4.4</td>
<td>Spatial Localization and Imaging</td>
</tr>
<tr>
<td>4.4.1</td>
<td>One-dimensional CSI</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Two-dimensional CSI</td>
</tr>
<tr>
<td>4.5</td>
<td>In Vivo 129Xe Resonance Assignments</td>
</tr>
<tr>
<td>4.5.1</td>
<td>129Xe blood resonance (209 ppm)</td>
</tr>
<tr>
<td>4.5.2</td>
<td>129Xe tissue resonance (198 ppm)</td>
</tr>
<tr>
<td>4.5.3</td>
<td>129Xe fat resonance (191 ppm)</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Summary</td>
</tr>
<tr>
<td>4.6</td>
<td>Brain 129Xe NMR and MRI</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

2.1 Depopulation optical pumping in Rb with circularly polarized light7

2.2 Rb-Xe molecule and the various angular momenta ..10

2.3 Two types of spin-exchange collisions ..16

3.1 The 129Xe polarizer installed adjacent to the 2 Tesla magnet23

3.2 Schematic of the 129Xe polarizer and delivery system24

3.3 The OPSE cell and sidearm assembly ...25

3.4 Chemisorption of n-octadecyltrichlorosilane (OTS) on glass28

3.5 Calculation of the 129Xe polarization as a function of OPSE cell length32

3.6 Spin-up of Cell 5 at 80 °C with two Optopower lasers (P182 and P183)34

3.7 Typical temperature dependence of 129Xe polarization35

3.8 Calculation of steady-state Rb and 129Xe polarizations36

3.9 129Xe polarization vs. xenon pressure ..37

3.10 “Big Rig” assembly ..39
3.11 Typical 129Xe laser-polarized and thermal NMR signal ... 40

3.12 Spectral profile of laser P183 .. 42

3.13 Beam shaping and polarizing optics ... 43

3.14 129Xe relaxation in the PFA tubing .. 44

3.15 129Xe ice relaxation time at 77 K and 500 Gauss .. 48

3.16 Determination of “syringe” T_1 .. 49

3.17 Delivery electronics: Analog subsystem .. 52

3.18 Delivery electronics: Digital subsystem .. 52

3.19 Delivery electronics: Front panel .. 53

3.20 Timing diagram for xenon delivery .. 54

3.21 Volume of breathing gas delivered as a function of needle valve setting 55

3.22 Xenon delivery performance ... 56

3.23 Experimental platform and detail ... 57

3.24 Delivery pressure vs. time profiles measured at animal ... 58

3.25 Dual tuned volume probe ... 59

3.26 Doubly tuned single coil surface probe .. 60
3.27 Magnitude of 129Xe gas spectrum vs. time..62

3.28 Calculation of P_{final} after N accumulation cycles ..64

4.1 *In vivo* NMR spectrum of 129Xe in the rat body acquired at 2 T70

4.2 *In vivo* NMR spectrum of 129Xe in the rat body at 2 T72

4.3 Dynamics of 129Xe magnetization *in vivo* (gas and blood resonances)...............75

4.4 Dynamics of 129Xe magnetization *in vivo* (blood, tissue, and fat resonances) ...76

4.5 Individual 129Xe spectra obtained from the rat body...77

4.6 One-dimensional CSI of 129Xe dissolved in blood, tissue, and fat in the rat body and 1H spin-echo images for anatomical registration...81

4.7 Localized spectra of 129Xe in the rat body..82

4.8 129Xe axial and coronal 2D CSI ..84

4.9 False-color overlay of the axial and coronal 129Xe 2D CSI images onto the 1H images...85

4.10 Regions from the coronal 2D CSI used to generate figure 4.1187

4.11 129Xe spectra obtained from individual voxels of the coronal 2D CSI dataset .88

4.12 Spectrum of 129Xe in the rat head at 2 T ...94

4.13 Uptake of 195 ppm “grey matter” peak ...96
4.14 2D CSI 129Xe image of the rat brain ...98

4.15 Coronal gas imaging: CSI and projection reconstruction 129Xe gas imaging...101

5.1 Schematic of the flow of inhaled laser-polarized 129Xe magnetization in vivo...109

5.2 Time-dependence of the longitudinal 129Xe tissue magnetization112

5.3 Time dependence of the laser-polarized 129Xe tissue signal114

5.4 Steady-state 129Xe tissue signal from equation 5.18 plotted as a function of f_{BT}, for a family of tissue T_1 ...115

5.5 Steady state 129Xe tissue signal (equation 5.18) plotted as a function of tissue tip angle α, for several values of f_{BT} ..116

5.6 Steady state 129Xe tissue signal (equation 5.18) plotted as a function of tissue tip angle α, for several values of tissue T_1 ...117

5.7 Individual NMR spectrum of laser-polarized 129Xe in the rat thorax..............119

5.8 Individual 129Xe spectrum acquired from the rat head124

5.9 T_1 extracted from simulated data ...126

5.10 f_{BT} extracted from simulated data ...126

6.1 Calculated 129Xe polarization vs. LDA linewidth (high xenon pressure)134

6.2 Calculated 129Xe polarization vs. LDA linewidth (low xenon pressure)136
A.1 Sampling of k-space by 2D projection reconstruction ..143

A.2 Sampling of k-space by 2D gradient echo ..145
LIST OF TABLES

1.1 Comparison of *in vivo* 1H and laser polarized 129Xe magnetic resonance........3

2.1 Mechanisms that contribute to Rb depolarization...15

3.1 OPSE cell cleaning and coating procedures..29

4.1 NMR parameters extracted from the fit to the body spectrum............................73

4.2 Rat tissue perfusion rates and xenon blood:tissue partition coefficients80

4.3 NMR parameters extracted from the fit to the brain spectrum..........................95

5.1 Parameters used to evaluate ζ for grey matter in a 250 g Sprague-Dawley rat ...123
Chapter 1

Introduction

Overcoming the Powers of Evil in NMR

This thesis describes the application of spin-exchange optical-pumping techniques to in vivo magnetic resonance studies, thus extending the utility of laser-polarized noble gases from applications in high density nuclear targets [1, 2], neutron polarizers [3], and in benchtop tests of fundamental symmetries [4-9]. In vivo magnetic resonance with laser-polarized 129Xe is still in its infancy, and the work presented in this thesis includes many of the first experiments in this field. The intent of this thesis is to establish an experimental and theoretical foundation for the quantitative non-invasive in vivo measurement of perfusion with laser-polarized 129Xe magnetic resonance.

In the past two decades, nuclear magnetic resonance (NMR) techniques have led to the development of magnetic resonance imaging (MRI) (for review see [10]). MRI has become a powerful, non-invasive diagnostic and research technique in medicine, and it is the imaging modality of choice for many regions of the body. Magnetic resonance images are tomographic representations of the spatial variation in the density and magnetic properties of nuclear moments (typically 1H). In conventional magnetic resonance, the spin polarization used in imaging is determined by the Boltzmann equilibrium. Large, static magnetic fields are used to induce a Boltzmann polarization of water protons (1H). The NMR signal per unit volume is proportional to the nuclear magnetization $\rho \mu P$, where ρ is the density, μ is the nuclear magnetic moment, and P is the nuclear polarization. The nuclear magnetic moments are small (of order 10^{-23} erg/G), and the induced Boltzmann nuclear spin polarization is tiny (7×10^{-6} at 2 T). Despite this, the high proton density in
tissue-bound water compensates and makes high-resolution 1H MRI possible. However, several MRI techniques, such as those used in functional studies of the brain, suffer from low signal-to-noise resulting from the small 1H polarization.

Optical-pumping/spin-exchange (“laser polarization”) techniques produce long-lived, non-equilibrium nuclear polarization in noble gas isotopes (e.g., 3He and 129Xe) of order 0.1 to 1 by spin-exchange with optically pumped Rb vapor (for a review see [11]). This large nuclear polarization is an elegant way to overcome what Ernst calls the “the powers of evil in NMR,” i.e., the inherently low sensitivity of NMR [12]. With typical 129Xe polarizations five order of magnitude larger than Boltzmann equilibrium, the use of polarized noble gases as the imaged species presents many new MRI and NMR possibilities.

In 1994 the first MRI experiment using laser-polarized 129Xe in a biological system was performed [13]. A few milliliters of 129Xe gas were laser-polarized in Princeton, NJ and driven 100 miles to Stony Brook, NY where it was imaged in the airspaces of the excised lungs of a mouse. Motivated by this initial demonstration, we have subsequently shown that in vivo magnetic resonance tracer techniques with laser-polarized 129Xe provide a powerful enhancement to currently existing MRI methods.

The study of the manner in which inert gases are taken up by the tissues of the body has a long history [14-17]. Xenon, in particular, is highly soluble in blood [18] and freely diffusible across biological membranes in vivo [17]. Xenon is chemically inert, and is carried to distant organs where it accumulates in tissue. These properties spawned nuclear medicine techniques which analyze in vivo xenon uptake and washout curves to study cerebral blood flow [19], kidney perfusion [20], and heart perfusion [21]. These techniques use both radioactive 133Xe, in x-ray emission computed tomography (SPECT) [19], and stable xenon, as an x-ray attenuation agent in transmission computed tomography (CT) [22, 23].

Laser-polarized 129Xe magnetic resonance overcomes some limitations of conventional magnetic resonance, and it raises the possibility of imaging tissue to which polarized 129Xe is carried as a magnetic tracer by flowing blood (see table 1.1). The long relaxation times in blood [24] and tissue [25, 26] allow in vivo NMR study. The large range of chemical shifts of 129Xe in vivo allow background-free tissue-specific measurement of dissolved phase 129Xe NMR signal. The goal of this thesis is the extension of xenon nuclear medicine
techniques with the use of laser-polarized 129Xe magnetic resonance, and the development of a new framework by which non-invasive quantitative measurement of tissue perfusion and physiological function may be made.

The most interesting motivation for the quantitative study of tissue perfusion comes from the relationship between cerebral circulation and brain function. For over one hundred years, it has been known that a close relationship exists between neural activity and blood flow. Roy and Sherrington suggested in 1890 that cerebral blood flow (CBF) is controlled locally and does not passively follow changes in systemic blood pressure [27], and it is now established that local cerebral circulation corresponds with local variation in functional activity. This coupling between functional activity and perfusion within small regions of the brain forms the basis of the study of regional brain activation, and has in turn greatly enriched the understanding of the functional organization of the central nervous system. Cerebral metabolic rates of oxygen and glucose use are now known to be locally adjusted to meet the metabolic needs through local regulation of CBF. Although the brain is topologically complex, specific brain regions perform specific functions, making an anatomical map of brain function possible. Sensory stimulation, motor activity and information processing in the brain all correlate with changes in regional cerebral blood flow (rCBF). Measurement of changes in blood flow are suitable as functional brain mapping studies. The ultimate goal of a totally noninvasive method that enables the mapping of CBF with high temporal and spatial resolution has not yet been attained, and knowledge of brain function would be greatly extended by a quantitative, high-resolution, and non-

<table>
<thead>
<tr>
<th></th>
<th>1H</th>
<th>129Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization</td>
<td>Intrinsic (tissue, water, fat)</td>
<td>Airspaces (lung, sinus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soluble in blood/tissue</td>
</tr>
<tr>
<td>Density</td>
<td>6×10^{22}/cc (liquid)</td>
<td>3×10^{19}/cc (gas)</td>
</tr>
<tr>
<td>Polarization</td>
<td>7×10^{-6} at 2 T and 300 K (equilibrium)</td>
<td>0.1 to 1 (non-equilibrium)</td>
</tr>
<tr>
<td>Relaxation time</td>
<td>of order 1 second $in vivo$</td>
<td>Hours/days (frozen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seconds ($in vivo$)</td>
</tr>
<tr>
<td>Larmor frequency</td>
<td>42 MHz/T</td>
<td>12 MHz/T</td>
</tr>
</tbody>
</table>

Table 1.1: Comparison of $in vivo$ 1H and laser polarized 129Xe magnetic resonance.
invasive method of measuring rCBF in an animal model.

Given the high levels of 129Xe nuclear polarization currently achievable with laser-polarization [28, 29] and the desirable chemical and biological properties of Xe for measuring tissue perfusion, we have applied magnetic resonance and spin-exchange optical pumping techniques to the goal of a quantitative technique for the measurement of perfusion with laser-polarized 129Xe magnetic resonance. This thesis describes experiments in which laser polarized 129Xe is delivered to living rats by inhalation and transported to tissue via blood flow where it is detected using MR spectroscopy and imaging techniques. The time-dependent spatial distribution of 129Xe signal intensity reflects local blood volume, blood flow rates, and the efficiency of perfusion and diffusive transport in tissues, and we propose a new method of using laser-polarized 129Xe magnetic resonance to quantitatively measure tissue perfusion.

This thesis describes the developments in our laboratory over the past 6 years. The in vivo 129Xe magnetic resonance research program immediately presented a daunting shift from our past experience in spin-exchange optical pumping; could we even consider putting a valve on a carefully prepared optical-pumping cell containing high-pressure xenon and hot alkali metal vapor, increasing the laser-polarized 129Xe production volumes more than ten-fold, delivering it to a breathing animal, and imaging the 129Xe magnetic moment density in organs which are reached by blood flow? Emphasized herein are those experimental strides and in vivo results essential to establish the feasibility of a 129Xe magnetic resonance tracer method for perfusion measurement.

Chapter 2 introduces the fundamentals of Rb depopulation optical pumping and Rb-129Xe spin-exchange. This description includes a review of the mechanisms that contribute to depolarization of both Rb and 129Xe. Estimates of these rates in the optical pumping cell used in this experiment are given. The numerical optical-pumping/spin-exchange calculations used to evaluate polarizer design parameters and polarizer cycle optimization are described.

Chapter 3 describes the design, construction, performance, and optimization of the laser-polarized 129Xe production and delivery system that is used in all the in vitro and in vivo MR imaging experiments in this thesis. The advent of this system marked the beginning of our ability to produce liter-volumes of polarized 129Xe, and represented an order of
magnitude increase over previously reported production volumes of polarized 129Xe. The additional hardware necessary to interface to the imaging system is also described.

Chapter 4 describes the experimental measurements of the distribution and dynamics of laser-polarized 129Xe magnetization obtained from rodents in vivo. The results presented in this chapter include many of the first experiments in this field, including the first in vivo 129Xe NMR spectrum from the head, the first tissue images of 129Xe, and the first in vivo 129Xe chemical-shift resolved images (in one- and two-dimensions). These results establish the experimental feasibility of laser-polarized 129Xe as an in vivo magnetic resonance tracer. The dynamics of polarized 129Xe uptake in vivo are presented. The assignments of the multiple 129Xe resonances observed in vivo are given, based on analysis of spectroscopic, uptake, and imaging results of this chapter.

Chapter 5 presents a full description of the 129Xe magnetic tracer theory. The theoretical framework for the 129Xe magnetic resonance tracer method is developed and a model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions is presented. It will be shown that careful control of the NMR parameters will allow the rate of blood flow to perfused tissue and the 129Xe tissue relaxation rate to be extracted independently from NMR measurement of the steady-state 129Xe tissue signal. The estimated signal-to-noise ratio for this technique in rat grey-matter is calculated based on the experimental results of Chapter 4. The model is then used to extract perfusion rate and tissue T_1 from simulated measurements of the steady-state 129Xe tissue NMR signal. The limitations and caveats of this method are discussed.

Chapter 6 summarizes the prospects for the future of a laser-polarized 129Xe magnetic tracer method. In particular, increases in 129Xe polarization are essential for the continued success of this field, and the likely technical improvements attainable in the near-term time scales are outlined. A brief overview of the NMR and MRI techniques used in this thesis is provided as an Appendix.
Chapter 2

Rb optical pumping and Rb-\(^{129}\)Xe spin-exchange

Spin-exchange optical pumping is a two step process for polarizing \(^{129}\)Xe. In this technique large \(^{129}\)Xe nuclear polarizations are obtained by the transfer of photon angular momentum first to alkali-metal electrons and subsequently to \(^{129}\)Xe nuclei. These optical-pumping and spin-exchange techniques are the heart of \(^{129}\)Xe polarizer used in the experiments in this thesis. This chapter reviews the essential Rb optical pumping (OP) and \(^{129}\)Xe spin-exchange (SE) physics, including polarization relaxation mechanisms.

2.1 Optical Pumping in Rb

Optical pumping of alkali metals, first described by Kastler [30], is the efficient transfer of photon angular momentum to the internal degrees of freedom of an alkali metal vapor by resonant scattering. Optical pumping in alkali metals has been treated in detail by Happer [31], and pumping in dense Rb vapors has been specifically studied by Wagshul and Chupp [32] and Appelt et al. [33]. The work described in this dissertation uses a method known as depopulation pumping to polarize the electron ground state of Rb atoms. In this technique, a static magnetic field (\(B_0\)) is applied along the long axis of a cylindrical glass cell containing Rb vapor which splits the degenerate Zeeman levels and provides the axis of quantization. Light resonant with the Rb D1 transition (794.7 nm) drives electron transitions between the \(5^2S_{1/2}\) ground state and the \(5^2P_{1/2}\) excited state (figure 2.1) If the incident light is right circularly polarized (\(\sigma^+\)), angular momentum conservation prevents the
$^5S_{1/2} \, m = +1/2$ magnetic sublevel from being excited. The absorption of a σ^+ photon only drives transitions from the $m = -1/2$ ground state to the $m = +1/2$ excited state. Once in the $m = +1/2$ sublevel of the $^2P_{1/2}$ excited state, the atom can, via spontaneous emission, decay to either $^2S_{1/2}$ ground state sublevel with the relative decay probabilities given by the Clebsh-Gordon coefficients (1/3 to the $m = +1/2$ ground state and 2/3 to the $m = -1/2$ ground state). An electron decaying to the spin-down ground state is repumped to the spin-up excited state. Once in the spin-up ground state, no further optical excitation can occur. In the absence of any relaxation processes all spins will accumulate in the spin-up ground state.

The $^2P_{1/2}$ excited state can decay radiatively by emitting randomly-polarized resonant photons. In our experiments, the Rb number density (typically 10^{12}–10^{13} cm$^{-3}$) is sufficient so that the Rb vapor is optically thick and most of these decay photons are reabsorbed. When these photons are reabsorbed, the $m = +1/2$ ground-state can be pumped to the $m = -1/2$ ground-state, reducing the ground-state spin polarization. This process is known as radiation trapping. To prevent radiation trapping, nitrogen is added to collisionally de-excite the excited Rb atoms before they can reradiate a photon. Sufficient quenching gas ensures that an excited atom has little chance of reradiating a photon which might multiple scatter before escaping from the pumping cell and thereby depolarize the Rb vapor. A collision with a N$_2$ molecule transfers energy from the Rb excited state to
vibrational and rotation degrees of freedom in the diatomic molecule. The cross section for N₂ quenching of Rb (²P₁/₂ →²S₁/₂) is measured [34] as 58 Å². The natural excited state Rb lifetime of about 28 ns [35] is shortened to about 1 ns in the presence of 100–150 Torr of N₂. Therefore only about 5% of the atoms decay radiatively under our optical pumping conditions. The presence of quenching gas essentially eliminates radiation trapping as a source of relaxation of Rb polarization.

The presence of N₂ and Xe gas in the optical pumping cell also collisionally mixes the Rb ²P₁/₂ sublevels. This mixing rapidly equalizes the magnetic sublevel population of the ²P₁/₂ excited state. Rapid collisional N₂ quenching of these equally populated excited-state sublevels repopulates the ground-state sublevels equally since collisional decay to either ground state sublevel is equally probable. Thus an atom excited from the −1/2 ground-state has equal probability of collisionally relaxing to the +1/2 or −1/2 ground-state, and needs on average two absorbed photons are needed to pump a spin-down ground-state electron into the spin-up ground-state.

The Rb level diagram of figure 2.1 neglects the Rb nuclear spin. The two naturally occurring isotopes, ⁸⁵Rb (72% abundant) and ⁸⁷Rb (28% abundant) have nuclear spin I = 5/2 and 3/2, respectively. The hyperfine coupling of the Rb nuclear spin to the Rb electron spin splits the ground and excited states of each isotope into two hyperfine levels, F = I + 1/2 and F = I − 1/2. Excitation from one of the 2F + 1 ground-state sublevels to one of the excited-state sublevels by σ⁺ light still requires a Δm_F = +1 transition. As in the simplified case, there is one ground-state sublevel that can not be pumped by σ⁺ light and polarization will accumulate in this state. Initially, however, it does take many more pumping cycles to transfer population to this state. The Rb nuclear sublevels act as a reservoir of angular momentum, and the optical pumping process is slowed. This so-called slowing factor [32, 33, 36] can be neglected in our discussions as the rapidly-reached steady-state Rb polarization remains unchanged. Optical pumping/spin-exchange production of polarized ¹²⁹Xe in the work reported here typically occurs at high gas density (1–3 amagat). This high gas density broadens the hyperfine structure of the D₁ absorption line to the extent that it is no longer resolvable. In our experiments, the absorption linewidth is typically 40 GHz (14 GHz/amagat for N₂ and 18 GHz/amagat for ¹²⁹Xe), compared to the

1. The density of an ideal gas at STP is 1 amagat = 2.69 × 10¹⁹ cm⁻³
largest Rb hyperfine splitting of 6835 MHz. Under these conditions both hyperfine states are equally likely to absorb the light, and the simple model of figure 2.1 is sufficient.

The ultimate polarization that an optically pumped alkali-vapor can attain depends on the ground-state electron polarization relaxation rate. Relaxation of the Rb ground-state sublevels is known as spin-destruction, to which many processes contribute. Neglecting effects of alkali-metal nuclear-spin, the optical pumping rate equations for the ground-state sublevel populations are

$$\frac{d}{dt} \rho_{\text{Rb}}(\pm \frac{1}{2}) = \pm \left[\gamma_{\text{opt}} + \frac{\Gamma_{\text{SD}}}{2} \right] \rho_{\text{Rb}}(-\frac{1}{2}) \mp \frac{\Gamma_{\text{SD}}}{2} \rho_{\text{Rb}}(+\frac{1}{2}), \quad (2.1)$$

where $$\Gamma_{\text{SD}}$$ is the total Rb ground-state spin-destruction rate, and $$\gamma_{\text{opt}}$$ is the scattering rate per Rb atom. The scattering rate is defined by

$$\gamma_{\text{opt}} = \int \Phi(\nu) \sigma(\nu) d\nu, \quad (2.2)$$

where $$\Phi(\nu)$$ is the incident laser photon flux per unit frequency, and $$\sigma(\nu)$$ is the pressure-broadened Rb D1 absorption cross section. Here it is assumed that the rate of collisional de-excitation of Rb $$5^2\text{P}_{1/2}$$ atoms is much greater than $$\gamma_{\text{opt}}$$. Rewriting equation 2.1 in terms of the Rb polarization, $$P_{\text{Rb}} = \rho_{\text{Rb}}(+\frac{1}{2}) - \rho_{\text{Rb}}(-\frac{1}{2})$$,

$$\frac{dP_{\text{Rb}}}{dt} = \gamma_{\text{opt}}(1 - P_{\text{Rb}}) - \Gamma_{\text{SD}} P_{\text{Rb}}. \quad (2.3)$$

Assuming an initially unpolarized Rb vapor, the solution to equation 2.3 is

$$P_{\text{Rb}}(t) = \frac{\gamma_{\text{opt}}}{\gamma_{\text{opt}} + \Gamma_{\text{SD}}} \left(1 - e^{-(\Gamma_{\text{SD}} + \gamma_{\text{opt}})t}\right). \quad (2.4)$$

High Rb polarization is obtained through minimization of depolarizing processes. When the optical pumping rate is high compared to the total electron spin-destruction rate ($$\Gamma_{\text{SD}}$$) between ground state sublevels, the $$m = -1/2$$ ground state sublevel will be depopulated and significant ground state Rb polarization results. The steady state Rb polarization from equation 2.4 is simply
Relaxation of the polarized Rb ground state can be caused by many mechanisms. In our optical pumping cells, the source of these spin-destroying processes include spin-exchange and spin-rotation collisions with Rb and other atoms and molecules, collisions with the container walls, and radiation trapping. The contribution of each relaxation process to Γ_{SD} is discussed below.

Collisions in the optical pumping cells can occur between Rb, 129Xe, and N$_2$. The angular momentum vectors in the collision process are shown schematically in figure 2.2 for a typical binary collision. Relaxation mechanisms are characterized by their respective velocity-averaged cross section, $\langle \sigma \nu \rangle$. For binary collisional processes in general, the rate of depolarization per Rb atom can be described by the product of a rate constant and the number density of the species X colliding with Rb, i.e.,

$$\Gamma_i = \langle \sigma \nu \rangle [X] \equiv \kappa_i [X]$$

(2.6)

where Γ_i is the collisional relaxation rate per Rb atom for process i, $\langle \sigma \nu \rangle$ is the velocity-averaged cross section, [X] is the number density of species X, and κ_i is the relaxation rate constant for a given process. The relative velocity, ν, depends on the atomic species involved in the collision. To evaluate and compare relaxation rates, the typical running
conditions of the polarizing cell for our 129Xe polarizer are now used. The densities of the constituents of the optical pumping cell in this experiment during normal operating conditions are: $[\text{Xe}] = 4.2 \times 10^{19} \text{ cm}^{-3}$ (2.2 amagat), $[\text{N}_2] = 4.2 \times 10^{18} \text{ cm}^{-3}$ (0.2 amagat), and $[\text{Rb}] \sim 8 \times 10^{12} \text{ cm}^{-3}$ at $T = 105 ^\circ \text{C}$.

2.1.1 Spin rotation collisions

The spin-rotation interaction occurs during collisions between Rb and the other atoms in the optical pumping cell. This interaction couples the spin of the Rb electron S to the rotational angular momentum N of the colliding binary pair. The spin-rotation interaction is responsible for most of the spin relaxation of alkali-atoms mixed with noble gases [37]. The spin-rotation interaction is written

$$H_{SR} = \gamma(R) N \cdot S,$$

where the spin-rotation coupling constant γ is a function of the internuclear separation R of the colliding pair and of the species of atom colliding with Rb. The spin-rotation interaction arises from precession of the electron spin about motionally produced magnetic fields during the collision. Spin-rotation rate constants have been measured to be $\kappa_{SR,N_2} = 9.38 \times 10^{-18} \text{ cm}^3 \text{s}^{-1}$ [32] and $\kappa_{SR,Xe} = 5.2 \times 10^{-15} \text{ cm}^3 \text{s}^{-1}$ [38] for Rb-N_2, and Rb-129Xe, respectively. In the OPSE cell used in this experiment, the calculated spin-rotation contributions to the Rb relaxation are $\Gamma_{SR,N_2} = 40 \text{ Hz}$, and $\Gamma_{SR,Xe} = 2.2 \times 10^5 \text{ Hz}$.

2.1.2 Spin exchange collisions

Binary collisions between Rb atoms can result in a spin-exchange interaction written schematically as

$$\text{Rb}(\uparrow) + \text{Rb}(\downarrow) \rightarrow \text{Rb}(\downarrow) + \text{Rb}(\uparrow),$$

where arrows indicate the electron spin state. This interaction between pairs of Rb atoms with electron spins S_i and S_j is dominated by the total spin-conserving exchange interaction [33].
where the coupling constant of the interaction $J = J(R)$ arises both from the electromagnetics and from the requirement of proper symmetrization of the wave functions of the colliding atoms. The Rb–Rb spin-exchange rate constant has been measured to be $\kappa_{SE,Rb} = 8.8 \times 10^{-10} \text{ cm}^3\text{s}^{-1}$ [39]. This corresponds to a calculated Rb-Rb spin-exchange rate in this experiment of $\Gamma^{SE}_{Rb} = 7 \text{ kHz}$. However, total spin $S = S_i + S_j$ is conserved in this interaction, so Rb-Rb spin-exchange does not contribute to Rb depolarization.

Collisions between a Rb atom and a non-alkali atom also results in a spin-exchange interaction, although this has a different physical origin than Rb-Rb spin-exchange. As above, the spin-exchange interaction is written schematically as

$$\text{Rb}(\uparrow) + B(\downarrow) \rightarrow \text{Rb}(\downarrow) + B(\uparrow), \quad (2.10)$$

where B is any of the non-alkali constituents of the optical-pumping cell: ^{129}Xe or N$_2$. The origin of the nuclear-electron spin-exchange interaction is the magnetic dipole-dipole interaction

$$H_{SE} = \alpha K \cdot S \quad (2.11)$$

where α is a function of the internuclear separation of the Rb-Xe or Rb-N$_2$ pair. Spin-exchange from the Rb electron to Xe nucleus is the mechanism that produces polarized ^{129}Xe in these experiments and is discussed in more detail in section 2.2. The Rb-Xe spin-exchange rate constant has been measured as $\kappa_{SE,Xe} = 3.70 \times 10^{-16} \text{ cm}^3\text{s}^{-1}$ [40], and the Rb-N$_2$ spin-exchange constant is suggested to be $\kappa_{SE,N_2} = 8 \times 10^{-19} \text{ cm}^3\text{s}^{-1}$ [41]. The calculated relaxation rates (per Rb atom) are $\Gamma_{SE,Xe} = 2 \times 10^4 \text{ Hz}$, and $\Gamma_{SE,N_2} = 3 \text{ Hz}$.

2.1.3 Rb-Rb spin relaxation

Relaxation due to collisions between polarized Rb atoms can be significant at high alkali-metal vapor pressures. These spin-destroying collisions between polarized Rb atoms are written schematically as
Many interactions contribute to Rb-Rb spin relaxation including nuclear quadrupole relaxation in Rb singlet dimers [42] and the spin-axis interaction in triplet dimers [43], and several mechanisms remain under investigation [43, 44]. In particular, the spin-non-conserving anisotropic spin-axis interaction that couples the electron spins to the orbital angular momentum of the short-lived Rb-Rb molecule was first postulated to be

\[H_{SS} = \frac{2}{3} \lambda [3S_xS_x - S(S + 1)] , \]

(2.13)

where \(S_\zeta \) is the electron spin component along the internuclear axis [45]. Recent observation of the existence of resonances in the magnetic decoupling curves of Rb relaxation are consistent with the existence of a spin-axis interaction in spin-polarized alkali vapors [43].

An additional source of Rb-Rb relaxation comes from the spin-rotation interaction of the type described in section 2.1.1 [45]. Calculations [46] suggest that the rate constant for Rb–Rb spin-rotation is of similar magnitude to that of Rb-N\(_2\) spin-rotation. The five orders of magnitude difference in the number density between N\(_2\) and Rb in our \(^{129}\)Xe polarizer cells makes the resulting contribution to Rb relaxation due to Rb-Rb spin rotation negligible i.e., \(\Gamma_{SR,Rb} < 10^{-5} \) Hz.

The total Rb-Rb collision induced relaxation rate constant ("Rb spin-destruction") was measured by Wagshul et al. to be \(\kappa_{Rb-Rb} = 8.11 \times 10^{-13} \) cm\(^3\)s\(^{-1}\) [32, 47]. Using this measured value results in a calculated total Rb-Rb relaxation rate for this the cells used in our experiments \(\Gamma_{Rb-Rb} = 6 \) Hz.

2.1.4 Collisions with the cell walls

Collisions between Rb and the walls of the optical pumping cell can result in Rb relaxation due to both paramagnetic impurities in the glass and chemisorption at the wall. If the residence time of an adsorbed Rb atom on the wall is sufficiently long, these impurities will completely depolarize the Rb. This problem is mitigated to some extent by the use of wall coatings, details of which (with particular emphasis on \(^{129}\)Xe relaxation) are discussed in Chapter 3. In fact, evidence suggests that uncoated glass walls can be thought of as com-
pletely depolarizing [48-50]. Relaxation of Rb polarization on the cell walls has historically been a serious problem at low pressures (below 10^{-3} Torr) where the Rb mean free path is large compared to the dimensions of a typical cell, since diffusion of Rb to the walls determines the wall relaxation rate. In these cases depolarization at the cell walls seriously limits the attainable alkali-vapor polarization. In the multi-atmospheric pressures of the optical pumping cells used in our polarizer, the Rb diffusion constant in xenon is quite small: $D_{\text{Rb}} = 0.06 \, \text{cm}^2\text{s}^{-1}$ at 2.2 atm and 105 °C [35]. As a result, relaxation due to wall collisions is only significant within a small distance of the wall, i.e. of order $\sqrt{D_{\text{Rb}}/\gamma_{\text{opt}}}$, where γ_{opt} is the Rb optical pumping rate. With typical Rb optical pumping rates $\gamma_{\text{opt}} \geq 10^4 \, \text{s}^{-1}$, the layer of Rb polarization destroyed due to wall collisions is only appreciable within 2 10^{-3} cm of the wall. The change in Rb polarization due to this process is described by the diffusion equation

$$\frac{\partial P_{\text{Rb}}}{\partial t} \bigg|_{\text{wall}} = D \nabla^2 P_{\text{Rb}}.$$ \hspace{1cm} (2.14)

An order of magnitude estimate for the rate of depolarization is given by considering only the lowest-order diffusion mode [35] which is $\Gamma_{\text{diff}} \sim D/l^2 \sim 4 \times 10^{-2}$ Hz, where l is a characteristic dimension of the cell. The exact solution of equation 2.14 in a cylindrical cell of length l and radius a is given by Minguzzi et al. [51]. The rate constants for the $(m, n)^{\text{th}}$ diffusion mode are

$$\Gamma_{\text{diff}}^{mn} = D \left(\frac{n^2 \pi^2}{l^2} + \frac{\mu_m^2}{a^2} \right).$$ \hspace{1cm} (2.15)

where μ_m is the m-th zero of the zeroth-order Bessel function. Again considering only the lowest-order diffusion mode (higher diffusion modes effect only those Rb atoms closest to the cell walls), with $a \ll l$ in our cell and $\mu_1 = 2.405$, an order of magnitude estimate is given by $\Gamma_{\text{diff}} \sim 0.2$ Hz.

Table 2.1 summarizes the Rb relaxation processes, origin, and estimated relaxation rates in the polarizing cell as described in Chapter 3. Rates are given only for processes that contribute to Γ_{SD}. Of these, Rb–129Xe spin-rotation clearly dominates Rb ground-state spin relaxation in our system.
Spin Exchange Polarization of ^{129}Xe

The exchange of angular momentum from the Rb electron to ^{129}Xe nucleus during collisions is the mechanism that produces polarized ^{129}Xe in these experiments, and was introduced in section 2.1.2. Spin exchange can occur during either of the two collisional interactions that occur in mixtures of Rb, N$_2$ and Xe: during the formation of loosely bound Rb-^{129}Xe van der Waals molecules or during Rb-^{129}Xe binary collisions (figure 2.3). At the total gas pressures used in the polarizer cells (i.e., several amagats), the collisionally limited lifetimes of van der Waals molecules are extremely short, and the spin-exchange rate due to binary collisions greatly exceeds the spin-exchange rate due to the formation of van der Waals molecules [40]. Thus at the operating pressures of the OPSE cell used in this thesis, Rb-Xe spin-exchange can be treated as if it were entirely due to binary collisions; there is no spin-exchange due to Van der Waals molecule formation.

The dipolar Rb-Xe spin-exchange coupling (equation 2.11) is dominated by the Fermi-contact interaction

$$\alpha(R) = \frac{16\pi}{3} \frac{\mu_{\text{RB}} \mu_{\text{K}}}{K} |\psi(R)|^2,$$ \hspace{1cm} (2.16)
where μ_B is the Bohr magneton, μ_K is the magnetic moment of the 129Xe nucleus, and $\psi(R)$ is the wave function of the Rb valence electron evaluated at the position of the noble-gas nucleus. For spin-exchange to noble-gases, Herman [52] has shown that there is an enhancement of $\psi(R)$,

$$\psi(R) = \eta \phi(R) \quad (2.17)$$

where $\phi(R)$ is the Rb valence-electron wave function in the absence of the noble gas, and for Rb-129Xe spin-exchange, the enhancement factor η has been calculated to be $\eta = 50$ [11]. The enhancement comes from the fact that the Rb valence electron can be exchanged with one of the 129Xe electrons of the same spin state, thus effectively increasing the probability of finding the Rb valence electron at the 129Xe nucleus [53].

Analogous to the Rb optical pumping equations (equation 2.1), the polarization of 129Xe is characterized by spin-exchange rate and a relaxation rate. We write the rate equation for the 129Xe ground-state spin-up nuclear sublevel $\rho_{Xe}(+1/2)$ as
\[
\frac{d\rho_{Xe}(+1/2)}{dt} = \left[\gamma_{SE}\rho_{Rb}(+1/2) + \frac{\Gamma}{2} \right] \rho_{Xe}(-1/2) - \left[\gamma_{SE}\rho_{Rb}(-1/2) + \frac{\Gamma}{2} \right] \rho_{Xe}(+1/2),
\]

(2.18)

where \(\Gamma \) is the total \(^{129}\text{Xe} \) ground-state polarization-relaxation rate and \(\gamma_{SE} \) is the Rb-\(^{129}\text{Xe} \) spin-exchange rate (per \(^{129}\text{Xe} \) atom). The \(^{129}\text{Xe} \) spin sublevel populations \(\rho_{Xe}(\pm1/2) \) are normalized such that \(\rho_{Xe}(+1/2) + \rho_{Xe}(-1/2) = 1 \) and \(P_{Xe} = \rho_{Xe}(+1/2) - \rho_{Xe}(-1/2) \). Rewriting equation 2.18,

\[
\frac{dP_{Xe}}{dt} = \gamma_{SE}(P_{Rb} - P_{Xe}) - \Gamma P_{Xe}.
\]

(2.19)

In a vapor with a steady-state Rb polarization \(P_{Rb} \), the time-dependence of the \(^{129}\text{Xe} \) polarization given an initial \(^{129}\text{Xe} \) polarization \(P_{Xe}(t = 0) = 0 \) is

\[
P_{Xe}(t) = \frac{\gamma_{SE}}{\gamma_{SE} + \Gamma} P_{Rb}(1 - e^{-(\gamma_{SE} + \Gamma)t}).
\]

(2.20)

The simplifying assumption of a constant \(P_{Rb} \) is reasonable since characteristic Rb pumping times are on the order of \(10^{-3} \) s or less, while pumping times for \(^{129}\text{Xe} \) are on the order of ten minutes. From equation 2.20, the steady-state \(^{129}\text{Xe} \) polarization is \(P_{Xe}^\infty = \gamma_{SE}P_{Rb}/(\gamma_{SE} + \Gamma) \), with a polarization or “spinup” time of \(T_{spinup} = (\gamma_{SE} + \Gamma)^{-1} \). Rewriting the steady-state \(^{129}\text{Xe} \) polarization as

\[
P_{Xe}^\infty = \left(\frac{\gamma_{opt}}{\gamma_{opt} + \Gamma_{SD}} \right) \left(\frac{\gamma_{SE}}{\gamma_{SE} + \Gamma} \right),
\]

(2.21)

it is clear that high levels of \(^{129}\text{Xe} \) polarization are only achieved when the rate of Rb optical-pumping rate exceeds the rate of Rb spin-destruction \(\gamma_{opt} \gg \Gamma_{SD} \) and when Rb-Xe spin-exchange exceeds \(^{129}\text{Xe} \) spin-relaxation, \(\gamma_{SE} \gg \Gamma \). The first condition, \(\gamma_{opt} \gg \Gamma_{SD} \), is problematic because \(\Gamma_{SD} \) is quite large (\(~10^5\) Hz) under the normal operating conditions in the pumping cell. The use of high-power laser diode arrays (LDAs) addresses this issue by providing a high intensity laser source, i.e., a large optical pumping rate. With their broad spectral width (typically 750–1500 GHz FWHM), LDAs are far from being the ideal
light sources for OPSE production of polarized 129Xe, however their low cost per watt compared to Ti:Sapphire lasers and their ease of use has facilitated the increased polarization of 129Xe. The limitations and benefits of these light sources are discussed in more detail in chapter 3.

The second condition for production of high 129Xe polarization, $\gamma_{SE} \gg \Gamma$, is satisfied by careful preparation of the optical pumping cells and by the minimization of external environmental contributions to Γ. Two specific interactions that contribute to Γ in the pumping cell are relaxation due to magnetic-field inhomogeneties and relaxation due to collisions with the walls.

2.2.1 Relaxation due to magnetic-field inhomogeneties

The contribution to 129Xe relaxation in the polarizing cell due to magnetic-field inhomogeneties can be estimated [54, 55] from

$$\Gamma_{VB} = D_{Xe} \frac{\left|\nabla B_x\right|^2 + \left|\nabla B_y\right|^2}{B_0^2}, \quad (2.22)$$

where D_{Xe} is the Xe self-diffusion constant, B_0 is the mean magnetic field (assumed to lie along the z axis), and $\left|\nabla B_x\right|$ and $\left|\nabla B_y\right|$ are the spatial gradients of the transverse components of the magnetic-field. For the 129Xe polarizer installed adjacent to the 2 T MRI magnet, the measured transverse magnetic gradients at the optical pumping cell are $\left|\nabla B_x\right| \sim 1.2 \times 10^{-3}$ T cm$^{-1}$ and $\left|\nabla B_y\right| = 1.0 \times 10^{-3}$ T cm$^{-1}$. With a mean holding field of $B_0 = 4.5 \times 10^{-2}$ T, and $D_{Xe} = 0.04$ cm2s$^{-1}$ (at 2.2 amagat and 100 °C) [56], the calculated limit for Γ_{VB} is 5.7×10^{-5} s$^{-1}$, a time constant of roughly 5 hours. Thus the requirement that $\Gamma_{VB} \ll \gamma_{SE}$ is easily satisfied, over the practical range of γ_{SE}, by the measured magnetic inhomogeneity $\left|\nabla B_x\right| / B_0 < 0.05$ cm$^{-1}$

2.2.2 Wall relaxation

As discussed in section 2.1.4, the glass walls of the optical pumping cell often contain paramagnetic impurities which cause depolarization. 129Xe polarization is much more significantly affected by relaxation at the walls than is Rb, since the 129Xe repolarization rate (i.e. the Rb-Xe spin-exchange rate) is many orders of magnitude smaller than the Rb repump-
ing rate. Zeng et al. found that silicone-based wall coatings significantly reduced ^{129}Xe surface relaxation [57]. The loss of ^{129}Xe polarization to the walls can be described by a relaxation time T_w. Wall coatings are thought to reduce both the sticking time and also increase the distance between the colliding xenon and the wall impurities. We have measured relaxation rates for uncoated Pyrex cells to be typically 2×10^{-2} s$^{-1}$, and in silane-coated cells this relaxation decreases to values measured from 1.5×10^{-3} to 3×10^{-3} s$^{-1}$, about the same order as the Rb-Xe spin-exchange rate. Wall relaxation is the dominant contributor to the total ^{129}Xe relaxation rate in these cells, and silane wall coatings are discussed in detail in section 3.1.2.

2.3 Simulation Framework

Computer simulations based on numerical methods developed by Chupp and Wagshul [32] are used in this thesis to numerically model optical pumping and spin-exchange. These simulations model the propagation of optical pumping light through the cylindrical OPSE cell and compute the average Rb polarization in the cell. The laser photon flux per unit frequency $\Phi(r, z, \nu)$ is position dependent; unpolarized Rb absorbs and scatters resonant light, burning a hole in the intensity profile as it propagates through the cell. The propagation of pumping light through the cell is given by

$$\frac{d\Phi(r, z, \nu)}{dz} = -[\text{Rb}]\sigma(\nu)[1 - P_{\text{Rb}}(r, z)]\Phi(r, z, \nu).$$ \hspace{1cm} (2.23)

where the laser light is incident along the z-axis of the cylindrical OPSE cell with length l and radius a, and the laser is assumed to be cylindrically symmetric. The spatial dependence of the optical pumping rate (photon scattering rate) comes from the spatial dependence of the laser flux $\Phi(r, z, \nu)$:

$$\gamma_{opt}(r, z) = \int d\nu \Phi(r, z, \nu)\sigma(\nu).$$ \hspace{1cm} (2.24)

The steady-state Rb polarization $P_{\text{Rb}}(r, z)$ satisfies the diffusion equation [32]
\[D_{\text{Rb}} V^2 P_{\text{Rb}}(r, z) - \frac{\Gamma_{SD}}{S(r, z)} P_{\text{Rb}}(r, z) + \frac{\gamma_{\text{opt}}(r, z)}{S(r, z)} (1 - P_{\text{Rb}}(r, z)) = 0 \]

(2.25)

where \(D_{\text{Rb}} \) is the Rb diffusion constant and \(S \) is the slowing factor which depends on Rb polarization and therefore on position. Equations 2.23 and 2.25 can be solved by relaxation methods in two dimensions [32] for a given laser power and profile, Rb number density, wall relaxation rate, and pressure broadening.

A simplified computational model\(^1\) is used in simulations of the pumping cell in this thesis, where diffusion in the radial direction and diffusion between slabs is neglected, and uniform Rb density and wall relaxation rates are assumed. Diffusional losses due to the completely depolarizing front and rear walls of the cell are included and computed for each slab. The spatial dependence of the steady-state Rb polarization in this model is given by

\[P_{\text{Rb}}(z) = \frac{\gamma_{\text{opt}}(z)}{\gamma_{\text{opt}}(z) + \Gamma_{SD} + D_{\text{Rb}} / z^2}, \]

(2.26)

where \(D_{\text{Rb}} / z^2 \) is used as a rough estimate of the wall induced relaxation rate.

The computational procedure is as follows. The incident light profile at the front of the cell, \(\Phi(0, v) \), is computed for a given laser spectrum and power. The cell is modeled by slabs of length \(\delta_z \ll \frac{1}{D_{\text{Rb}} / \gamma_{\text{opt}}(z = 0)} \). Starting from the front window, the Rb polarization in each slab is computed using equation 2.26, with boundary conditions at the walls assumed to be \(P(r, 0) = P(r, l) = P(a, z) = 0 \). The light profile for the next slab is then computed from equation 2.23 using this value of \(P_{\text{Rb}} \). In this way, the Rb polarization in each slab is computed for the entire cell length. The average Rb polarization for the entire cell is found, and equation 2.20 is used to compute the average \(^{129}\)Xe polarization.

There are several prominent uncertainties that make comparison between these simulations and experimental results difficult. The Rb number density in the optical pumping cell is not precisely known because of uncertainty in the cell temperature due to local heating by the laser light, the Rb chemistry at the cell walls, and the frequent filling and emptying of the cell. Additionally, uncertainties in modeling the trajectory of the divergent laser beams through a long cell make accurate determination of \(\Phi(z, v) \) difficult. Nevertheless, these simulations agree reasonably well in systems with simple geometries [32, 47, 58]. For

\(^1\) The computer code for these simulations was written by Drs. Kevin Coulter and Robert Welsh.
example, simulations for the 129Xe polarizer used in this experiment will be shown to agree with our measured values of 129Xe polarization to better than a factor of two. These simulations provide a framework within which crucial cell design parameters can be explored, and specific results are shown in chapter 3.
Chapter 3

^{129}Xe polarization and delivery system

This chapter describes the design and construction of the patented [59] laser-polarized ^{129}Xe production and delivery system (figure 3.1 and figure 3.2) used in all the $\textit{in vitro}$ and $\textit{in vivo}$ ^{129}Xe MR imaging experiments described in this thesis. The advent of this system marked the beginning of our ability to produce liter-volumes of polarized ^{129}Xe and represents an order of magnitude increase over previously reported production volumes. The entire apparatus including lasers and optics, rapidly actuated valves, heating and cooling systems, and transport tubing lies in the high magnetic field environment of a 2 T MRI magnet. With approximately 3–7% polarization, 148 cc-atm of xenon is produced and stored as xenon ice every 5 minutes, and large quantities of polarized ^{129}Xe are obtained by cycling the accumulation process. The polarized ^{129}Xe is subsequently delivered in a controlled fashion to a sample or subject. Experiments with this device have established the feasibility of laser-polarized ^{129}Xe as an $\textit{in vivo}$ magnetic tracer for MRI. This reliable, effective, and relatively simple production method for large volumes of ^{129}Xe can be applied to other areas of research involving the use of laser-polarized noble gases.

3.1 Optical Pumping/Spin Exchange

This section describes the design, construction, and performance of the optical pumping/spin-exchange (OPSE) stage of the apparatus. The OPSE cells (figure 3.3) are typically 17 cm long, 25 mm outer diameter Pyrex cylinders (nominally 66 cc volume) with end windows blown flat during construction. The use of welded optically-flat windows was
Figure 3.1: The 129Xe polarizer installed adjacent to the 2 Tesla magnet.
Figure 3.2: Schematic of the 129Xe polarizer and delivery system.
avoided for many years for fear of the windows bursting at the high operating pressures in the cell. However, excellent results have recently been obtained with a cell ("cell 5") with optical flats. A Pyrex sidearm for Rb loading is attached to the center of the cell, perpendicular to the plane of the valves. A Pyrex outer jacket serves as an oven through which hot air is blown to heat the inner pumping cell. Two Pyrex high-vacuum valves with glass valve stems (Chemglass, Inc., Vineland, NJ) are mounted transverse to the long axis near each end of the cell. The cell interfaces to the cell filling stage at one end and to the polarized 129Xe delivery system at the other. Teflon valve stems with Teflon TFE encapsulated O-rings (Chemglass CG-560-01) were tried, but the Rb rapidly reacted with the Teflon stems at cell operating temperatures of 100–120 °C.

3.1.1 Cell manufacture

The production of OPSE cells is a multiple step process lasting several days. The first steps
in OPSE cell production are the chemical cleaning and coating of the cell interior to mini-
mize depolarizing 129Xe-wall interactions. The details of this cleaning and coating proce-
dure are described in the following section (section 3.1.2). After cleaning and coating, the
cell is attached to a turbomolecular pumping manifold using a 3/8" Cajon compression fit-
ting. A Rb ampoule is broken open and slid into the glass sidearm which is then sealed
with a Pyrex-working oxy-propane flame. The cell is baked out at 150 °C under vacuum.
The outgassing of the cell during this process is evident from the increase in pressure over
the first hour of heating. During bakeout the Rb ampoule is kept at room temperature to
prevent migration of Rb vapor into the outgassing cell and also from contaminating the
vacuum system. Cell bake-out is performed with both of the cell glass valves open to pre-
vent the O-rings from developing compression-set and losing their resilience. A stainless
steel Cajon compression fitting (with Viton O-rings) is used to cap the open end of the cell
during this time. The cell is baked until the pressure equilibrates—typically at 10^{-7} Torr
after 24–36 hours of baking. After bakeout, and the cell has returned to room-tempera-
ture, Rb is chased with a cool flame from the sidearm into the pumping cell. After suffi-
cient Rb metal condenses out in the cell, the sidearm is then pulled off with a working-
flame. The flame must never contact any coated surface in order to avoid burning the
coating. For this reason, care is taken during the coating process to keep coating solution
out of the sidearm and pulloff. After removing the sidearm the cell is pumped down to its
final pressure, typically less than 2×10^{-8} Torr. The optical pumping cell is then backfilled
with one amagat of purified N$_2$ and mated to the optical pumping/delivery system.

The magnetic properties of the Viton O-rings used on the glass valve stems have been
found to vary greatly; many were found to be substantially magnetic at 2 T. A domestic
mil-spec Viton compound (Lutz Sales Co, Inc., Hanover Park, IL) was found to be non-
magnetic, and all the O-rings used in the cell and the system are made of this compound in
size 007 (OR-007-2502-560) and size 009 (OR-009-2502-560). An extremely low vapor
pressure (typically 10^{-12} Torr at 23 °C) perfluronated grease, Christo-lube MGC 109 (LTI,
Jackson, OH), is used to lubricate all O-rings. This perfluornated grease is used instead of
hydrocarbon-based greases (such as Apiezon M) because of its alkali resistance and stabil-
ity at high temperature.
3.1.2 Octadecyltrichlorosilane coatings

Relaxation of 129Xe magnetization at the walls of the OPSE cell limits the maximum attainable 129Xe polarization. In an effort to reduce these depolarizing wall-interactions, wall coatings are applied to the cell walls. These coatings typically consist of a class of organosilane compounds which form oriented monolayers at solid-fluid interfaces by direct adsorption. The actual mechanism by which the silane coating acts to decrease wall spin relaxation is not well understood, but it is likely that the hydrocarbon chain on the silane, which forms an interlocking polymer with neighboring silane molecules, acts to both lower the binding potential by presenting a surface of hydrogen atoms and to separate the 129Xe from paramagnetic impurities in the glass. In order for a coating to be suitable for OPSE cells, it must be highly resistant to alkali vapor attack at the relatively high operating temperatures of the OPSE cell (150–200 °C).

Although silane compounds are widely used as wall coatings to prevent spin-relaxation, methods for preparing and coating the glass surface vary considerably [5, 49, 50]. Evaporatively applied coatings such as Surfasil (tetramethylchlorosilane) and dimethyldichlorosilane [57] are widely used, but are difficult to apply to complex cell geometries and are not well suited to high temperature environments. The use of n-Octadecyltrichlorosilane (OTS, CH$_3$-(CH$_2$)$_{17}$-SiCl$_3$) as a wall coating for 129Xe cells was first described by Oteiza [5]. Although good cells could be produced, the coating method was frequently unreliable and the important parameters not well understood.

A refined coating procedure was developed for the OPSE cells used in the 129Xe polarizer in this dissertation, based largely on the detailed study of OTS chemisorption and polymerization by Sagiv [60-62]. The key steps of the OTS coating chemistry (shown schematically in figure 3.4) are: 1) hydrolysis at the glass/coating-solution interface, 2) adsorption, and 3) polymerization. OTS itself is easily hydrolyzed under the influence of atmospheric humidity and may form undefined polymerized material in contact with water [60, 63]. To avoid this, the coating solution is always freshly prepared and used immediately after mixing, and during this step the coating solution is kept away from water. For the same reason, the cell itself must be dry since OTS is highly reactive with water, but the glass surface must also be sufficiently hydrated before coating. OTS does not adsorb to a dehydrated glass surface, and a dehydrated surface can result from simply rins-
ing the cell in methanol. In order to re-hydrate the glass, it is essential that water is the final cell rinse before coating. Trial and error, with particular attention to the three stages of OTS chemisorption, resulted in the coating procedure of Table 3.1.

Proper polymerization of OTS at the glass surface requires clean glass. High purity HPLC or spectrophotometric grade solvents are used in the cleaning and coating procedure. In order to remove a broad range of surface contaminants from the glass, the cell is cleaned with a long soak in an acid solution (known as “Piranha” in the semiconductor industry) followed by a sequence of polar and non-polar solvent rinses. Piranha solution is a hot and caustic solution and extreme care must be taken during its use. All of the solutions used in the cleaning procedure are poured into the cell through the glass Rb sidearm. Clean Teflon valve stems with teflon-encapsulated O-rings are inserted into the glass valve bodies to keep the solutions from leaking out of the cell. These stems are highly resistant to all of the chemicals used in the cleaning and coating process. Glass tubing is attached to the inlet and outlet of the cell with teflon PFA elbows so the cell can vent to atmosphere during cleaning and coating, thus preventing trapped air from imped ing the flow of liquids.

Figure 3.4: Chemisorption of n-octadecyltrichlorosilane (OTS) on glass
After cleaning, cells are dried under rough vacuum. Previously, cells were dried by flowing dry N\textsubscript{2} through them, however droplets of water often recondensed in a dry-appearing cell after the flow of N\textsubscript{2} was stopped. The OTS coating solution is poured into the cell through one of the valve bodies while the other remains plugged. Extreme care is taken to keep the coating solution below the level of the sidearm pull-off. After the coating solution is poured out, the cell is baked. OTS polymerization is accelerated at high temperature, and baking the newly coated cell at high temperature in a vacuum-oven is important as it allows the hexane to outgas from the silane-matrix [60]. After baking the cells, OTS polymerization is verified by filling the cell with about 10 mL of DI water and observing the curvature of the meniscus; coated glass dramatically beads water and no meniscus will form. The water is then drained, and the cell is baked again under vacuum until dry. This reliable and effective coating procedure is used for all the 129Xe polarizer cells in this dissertation, as well as for the dual species 3He–129Xe maser cells made in our group [8] and for other glass components of the 129Xe polarizer. Cells coated with this procedure have measured 129Xe relaxation times from 300 to 1000 s.

3.1.3 Optical pumping setup

This section describes the specifics of optical pumping in the 129Xe polarizer. Hot air (typically 80–120 °C) flows through the OPSE cell oven and maintains a Rb vapor density.

<table>
<thead>
<tr>
<th>Cleaning</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wash in hot soapy Alcanox in deionized (DI) H\textsubscript{2}O for 2 minutes.</td>
<td>1. Prior to coating, allow cell to rehydrate in air for ~ 1 hour.</td>
</tr>
<tr>
<td>2. Rinse (3×) with DI H\textsubscript{2}O.</td>
<td>2. 5 minutes in Coating solution. Do not allow solution to enter pull-off.</td>
</tr>
<tr>
<td>3. 1–3 hours in Piranha solution.</td>
<td>3. Rinse (3×) with CHCl\textsubscript{3}.</td>
</tr>
<tr>
<td>4. Rinse (3×) with DI H\textsubscript{2}O.</td>
<td>4. Bake under rough vacuum, at 200 °C for >16 hours. DO NOT preheat oven.</td>
</tr>
<tr>
<td>5. Rinse (3×) with Methanol.</td>
<td></td>
</tr>
<tr>
<td>6. Rinse (3×) with DI H\textsubscript{2}O.</td>
<td></td>
</tr>
<tr>
<td>7. Dry under rough vacuum, at room temperature.</td>
<td></td>
</tr>
</tbody>
</table>

Piranha solution: (30% H\textsubscript{2}O\textsubscript{2} + 97% H\textsubscript{2}SO\textsubscript{4} 3:7 v/v)

Coating solution: 2mM (0.788 cc/Liter) solution of OTS in 80% n-hexane + 12% CCl\textsubscript{4} + 8% CHCl\textsubscript{3} (v/v). Mix thoroughly with magnetic stirrer.

Table 3.1: OPSE cell cleaning and coating procedures
in the cell of typically $10^{12} - 10^{13}$ cm$^{-3}$, estimated from the vapor pressure curve measured by Killian [64],

$$[\text{Rb}] = \frac{10^{10.55 - 4132/T}}{1.38 \times 10^{-16} T},$$

(3.1)

where T is the cell temperature in Kelvin and [Rb] has units of cm$^{-3}$. The calculated Rb-129Xe spin-exchange rate, $\gamma_{SE} = \kappa_{SE}[\text{Rb}]$, varies from 5×10^{-4} s$^{-1}$ at 80 °C to 7×10^{-3} s$^{-1}$ at 120 °C. Temperature of the cell oven is regulated by an Omron E5EK temperature controller which can monitor the cell temperature at two locations: the hot air inlet and the hot air outlet. The thermal mass of the cell is sufficiently large that the use of the outlet RTD to control the heating from room temperature to operating temperature causes the inlet air temperature to drastically overshoot set-point temperature (by as much as 50–100 °C). In order to avoid overheating the OTS coating (which has been shown to fail in the presence of Rb vapor at temperatures above 190 °C [5]), initial cell heating is controlled using the front RTD. The cell temperature is affected by power deposited into the cell by the pumping lasers, and this is observed as an increase in outlet temperature when the lasers are turned on. Since the temperature measured by the outlet RTD more accurately reflects this laser heating effect, the temperature controller is switched to the outlet RTD once the cell has reached operating temperature to regulate cell temperature. At an operating temperature of 105 °C, the temperature differential between the inlet and outlet RTDs is typically 10–12 °C (inlet higher than outlet). With 20–40 W of laser light illuminating the cell, the temperature differential between inlet and outlet RTDs drops to less than 1 °C.

The magnetic holding field for optical pumping is provided by the 2 T magnet fringe field. In our setup, the magnetic field at the cell is approximately 450 Gauss, oriented predominately along the long axis of the OPSE cell. A Helmholtz coil pair would also produce a suitable magnetic field and allow the polarization stage to be set up in a magnetic field-free environment. The 129Xe relaxation rate due to wall collisions (Γ_{wall}) in OTS-coated cells is strongly dependent on magnetic field [65], and fields above 20 Gauss result in a calculated $\Gamma_{wall} \ll \gamma_{SE}$ over the typical range of operating temperatures.

The contribution to 129Xe relaxation in the pump cell from magnetic-field inhomogeneities was estimated in section 2.2.1 to be $\Gamma_{\varphi B}$ is 5.7×10^{-5} s$^{-1}$, a time constant of roughly
5 hours. This satisfies the requirement that environmental relaxation not dominate spin-exchange: $\Gamma_{VB} \ll \gamma_{SE}$. This is satisfied over the practical experimental range of γ_{SE} by the requirement $|\nabla B_{\perp}| / B_0 < 0.05 \text{ cm}^{-1}$.

For each experiment, the OPSE cell is filled with 1700 Torr of highly purified natural xenon (26.4% 129Xe) and 150 Torr of N$_2$. Choice of optimum Rb vapor density depends on the available laser spectral density as well the cell relaxation rates; the optimization of the OPSE parameters is discussed below.

3.1.4 OPSE cell design

This section describes the practical design considerations of the polarizer cell geometry. Prior to this work, there was no technique for production of laser-polarized 129Xe in the large quantities needed for in vivo MRI. Cell geometries in Rb-129Xe spin-exchange systems were usually small sealed spheres containing a few cc-atm of 129Xe, with their size primarily determined by the geometric constraints of the experiment [4, 5, 8, 66]. The goal of the polarization system in this experiment is to produce batches of polarized 129Xe that are accumulated and subsequently delivered. For a fixed amount of 129Xe to be polarized in each batch, the optimal OPSE cell length lies somewhere between two extremes: short cells (at high xenon pressure) and long cells (at low xenon pressure). Easy-to-make short cells require a high xenon pressure and consequently suffer from a large Rb-129Xe spin-rotation rate which limits the ultimate 129Xe polarization. In principle, longer cells with lower xenon pressures always provide higher 129Xe polarization since Rb-129Xe spin-rotation, which dominates Rb spin-destruction, scales with [Xe]. However, it is difficult to evenly illuminate long cells using a divergent light source, and the total cell length is also limited by practical space considerations.

In order to determine the optimum cell size, the maximum 129Xe polarization as a function of OPSE cell length was calculated, based on the model of section 2.3. The diameter of the cells is limited by the practical problem of maximizing the incident flux of four laser beams. A cell window with 1.94–2.22 cm diameter works well for four beams. A simulation with radius $r = 0.97$ cm and wall relaxation time $T_{\text{wall}} = 300$ s (i.e., a typical “good” cell) is shown in figure 3.5. The total amount of 129Xe is constant for each curve, so the 129Xe pressure varies inversely with the cell length. Depending on available lab resources,
the polarizer runs with 15–45 W of LDA light, and so 30 W of light with the spectral profile of an Optopower LDA was used in the calculation. In all the cases, the N₂ pressure is fixed at 150 Torr, and the Rb density is assumed constant throughout the cell as by Killian's formula (equation 3.1). Note that the polarization starts to saturate above about 10 cm for the family of curves shown here. A cell length of 17 cm (the solid line in figure 3.5) was chosen for all of the cells used in the polarizer as a compromise between the length at which the polarization saturates, and the practical consideration of increasing the cell length.

Figure 3.5: Calculation of the 129Xe polarization as a function of OPSE cell length, for three 129Xe production amounts. 129Xe number is constant along each curve. The solid line at 17 cm indicates the length of the cells used in the polarizer.
3.1.5 OPSE operation and performance

This section describes the operation and performance of the 129Xe polarization stage and compares the measured 129Xe polarization to the simulation calculations as a function of several operating parameters. The OPSE cell is connected to two distinct regions of the polarizer system (see figure 3.2): 1) the unpolarized gas handling side (known as the filling manifold) constructed largely of stainless steel and 2) the polarized gas transport side described in section 3.3. The cell is evacuated and filled through the inlet valve on the cell, with the filling procedure as follows: Nitrogen gas is metered into the manifold through a needle valve, and the manifold and cell are filled to a pressure P'. The gas pressure is read with a capacitive manometer gauge (MKS Baratron, model 122A) mounted in the room temperature manifold. The cell inlet valve is then closed and the manifold pumped out. The manifold and OPSE cell are then isolated from the pump, and the cell inlet valve opened. Nitrogen gas rushes out of the cell, rapidly equalizing the pressure on both sides of the inlet valve, achieving a final N_2 pressure P which is 150 Torr for all of the experiments presented here. The ratio P'/P is measured for each cell, and is typically 2.5. Natural abundance xenon is then metered into the system, and the manifold and cell are filled to the final pressure which is typically 1850 Torr. The inlet valve is then closed, and the manifold is evacuated.

For each cell the 129Xe wall relaxation rate is estimated from the measurement of the 129Xe spin-up rate; the 129Xe spin-up rate is $\Gamma_{\text{spinup}} = \kappa_{\text{SE}}[\text{Rb}] + \Gamma_{\text{wall}}$ with $\kappa_{\text{SE}} = 3.70 \times 10^{-16}$ cm3s$^{-1}$ and [Rb] given by Killian’s formula (equation 3.1). Since the Rb-129Xe spin-exchange constant is known to no better than a factor of two, the 129Xe spin-up measurements are performed at lower than typical operating [Rb] where the contribution of Rb-129Xe spin-exchange to the 129Xe spin-up rate is reduced; $\Gamma_{\text{SE}} = 5.3 \times 10^{-4}$ s$^{-1}$ at 80 °C and 2.9×10^{-3} s$^{-1}$ at 105 °C. A spin-up of one cell (“Cell 5”) at 80 °C is shown in figure 3.6. For each time point, the cell was filled and the lasers were unblocked. After optical pumping, the gas was expanded into the 129Xe “Big Rig” NMR probe (see section 3.1.6) in the center of the 2 T magnet, and a FID was acquired. The measured spin-up rate for this cell was $\Gamma_{\text{spinup}} = 2.73 \times 10^{-3}$ s$^{-1}$ at 80 °C, with contribution from $\Gamma_{\text{wall}} = 1/(450 \text{ s})$. This is consistent with 129Xe wall rates measured in OTS-coated cells used in other experiments in our group [8]. The wall relaxation rate measured in this way is used to parameterize a
given cell in optical-pumping calculations.

The large amounts of polarized ^{129}Xe needed for in vivo experiments are obtained by operating the polarizing stage in batch mode—i.e., the cell is filled, optically pumped for a cycle time T, the polarized ^{129}Xe gas stored, and the process is repeated. The choice of optimal cycle time is discussed in detail section 3.8, and for typical polarizer operation the cycle time $T = 5$ minutes. Therefore, the practical figure of merit for determination of cell operating temperature is the ^{129}Xe polarization after 5 minutes of optical pumping. The optimal operating temperature for the OPSE cell was determined by measurement of the ^{129}Xe polarization (after 5 minutes of optical pumping) as a function of cell temperature, and a typical temperature dependence is shown in figure 3.7. At each temperature, the cell was allowed to thermally equilibrate for 20 minutes, after which time the cell was filled and the lasers were unblocked. After 5 minutes of optical pumping, the gas was expanded into the ^{129}Xe “Big Rig” NMR probe in the center of the 2 T magnet, and a FID was acquired.

Figure 3.6: Spin-up of Cell 5 at 80 °C with two Optopower lasers (P182 and P183). The NMR signals were calibrated by comparison to thermally polarized ^{129}Xe NMR signal.
Figure 3.7: Typical temperature dependence of 129Xe polarization with two Optopower LDAs after 5 minutes of optical pumping. Solid line is the simulation result for the 129Xe polarization after 5 minutes pumping using an 18 W LDA profile light source and $T_{wall} = 7.5$ minutes. The drop in 129Xe polarization at higher temperatures (i.e., at higher Rb densities) is due to decreased optical pumping efficiency as the Rb vapor becomes optically thick. The NMR signals were calibrated by comparison to thermally polarized 129Xe NMR signal.

The solid line plotted in figure 3.7 is the simulation result for the 129Xe polarization after 5 minutes pumping with an 18 W LDA profile light source and $T_{wall} = 7.5$ minutes, for a cell with the same geometry and pressures as “Cell 5”. It should be noted that any temperature dependence of the 129Xe wall relaxation rate is neglected in OPSE calculations. The value of Γ_{wall} obtained from the spin-up measurement at 80 °C is used in the simulation over the range of temperatures 75–130 °C.

The Rb-129Xe spin-exchange rate is proportional to [Rb], and if we ignore the temperature dependence of the Rb polarization, the 129Xe polarization increases with [Rb].
the cell is heated, increasing the Rb density, the optical thickness of the Rb vapor also
increases. This decreases the volume of the cell which is illuminated with resonant pump-
ing light, decreasing the average Rb polarization [47] and consequently decreasing the
average 129Xe polarization. The effect of 129Xe wall relaxation on the temperature depen-
dence of the 129Xe polarization is easily understood from calculations shown in figure 3.8.

Cells with short T_{wall} have a flatter temperature dependence and achieve maximum 129Xe
polarization at higher temperatures.

Measurement of the 129Xe polarization as a function of xenon pressure in the OPSE
Figure 3.9: 129Xe polarization vs. xenon pressure, polarized for 5 minutes with one Opto-power and one Coherent LDA. Solid line is simulation result for the 129Xe polarization after 5 minutes pumping using a 29 W LDA profile light source and $T_{wall} = 7.5$ minutes. The NMR signals were calibrated by comparison to the thermally polarized 129Xe NMR signal.

cell is shown in figure 3.9. As above, the solid line plotted in figure 3.9 is the simulation result for the 129Xe polarization after 5 minutes of optical pumping. An 18 W LDA profile pumping source and a 129Xe wall relaxation time of $T_{wall} = 7.5$ minutes were used for a cell with the same geometry as “Cell 5”. The strong dependence of the 129Xe polarization on xenon pressure is a consequence of Rb spin-relaxation being dominated by Rb-Xe spin-rotation. Very high 129Xe polarizations (i.e., 35%) are achieved at low xenon pressures (i.e., 150 Torr 129Xe). Operation of the polarizer stage at this low xenon pressure is not practical given the production requirement of several-hundred cc-atm per in vivo experiment; 150 Torr Xe in the typical OPSE cell corresponds to 13 cc-atm of xenon polarized each cycle. With a cycle time τ of 5 minutes, the resultant production rate of 156 cc-atm/
hour is not sufficiently rapid given the practical time limit for polarized 129Xe accumulation, currently limited by the T_1 of frozen 129Xe at 77 K (see section 3.4) to approximately one hour.

Calculations of the 129Xe polarization, using the best estimates of T_{wall}, incident laser power, and spectral density, are consistently higher than the measured 129Xe polarization. However, over a wide range of xenon pressures and cell temperatures, these simulations agree with measured 129Xe polarization to better than a factor of two. Uncertainty in modeling the trajectory of the divergent laser beams through the OPSE cell is likely the dominant source in the discrepancy between calculation and experiment. It should be noted that we have not made measurements of the loss of 129Xe polarization during transport from the OPSE cell to the probe where the NMR signal is acquired. Although calculations of transport losses due to magnetic field gradients are estimated to be negligible (see section 3.3), and although NMR measurements are made as quickly as possible after the gas is introduced to the probe, the 129Xe polarization data should be considered a lower limit on the 129Xe polarization in the pump cell.

Calculations of the temperature dependence of 129Xe polarization (as in figure 3.7 and figure 3.8) reflect the T_{wall} dependent shape of experimental observations quite accurately, for cells with T_{wall} from 50–450 s. However, the calculations consistently indicate a temperature offset 10–12 °C higher from what is experimentally observed. This is likely due to the fact that the RTD temperature readings are lower than the actual Rb temperature in the cell as a result of laser heating. This is a well known problem in OPSE experiments that use high power laser diode arrays [67, 68].

3.1.6 Polarization calibration
Calibrated measurement of the laser-polarized 129Xe polarization is made by comparison of the laser-polarized 129Xe NMR signal with a thermally-polarized 129Xe NMR signal. Since the thermal 129Xe polarization is 4–5 orders of magnitude smaller than the laser-polarized signal, many thermal NMR spectra must be averaged in order to obtain a reasonable SNR. In order for the thermal 129Xe longitudinal magnetization to return to its equilibrium value after each NMR pulse, a pulse repetition time (TR) of a several T_1s must be used. We measure T_1 relaxation times of 129Xe gas in Pyrex vessels at 2 T to be of order 3
hours, so a thermal experiment consisting of several thousand tips is clearly impractical. It has been shown that the presence of one atmosphere of paramagnetic O₂ reduces the 129Xe T_1 to 0.3 s$^{-1}$ amagat$^{-1}$ [69]. We exploit this short T_1 of 129Xe mixed with O₂ to acquire several thousand thermal signals in an overnight run in the calibration apparatus known as “Big Rig”.

The Big Rig assembly (figure 3.10) sits in the center of the 2 T magnet at room temper-
ature and mates to the polarizer with PFA tubing. All of the valves on Big Rig are PFA plug valves (PFA-4354, Whitey, Ohio). After evacuating Big Rig, the volume between valve 2 and valve 3 (V_{23}) is filled with roughly 1 amagat of polarized 129Xe and valve 3 is closed. A single 60° tip is sufficient to obtain a signal from the laser-polarized gas with a typical SNR of several hundred with the Big Rig solenoid NMR coil (Q \sim 200). Oxygen is then introduced into the Big Rig through valve 1, filling the volume between valves 1 and 2 (V_{12}) with 80 PSIG of O₂. Valve 1 is closed and valve 2 is opened, allowing the gases to mix. The final density of O₂ in V_{23} is 1.3 amagat. The gases are allowed to mix for several characteristic interdiffusion times,

$$
\tau \equiv \frac{L^2[Xe]}{4\pi^2 D},
$$

(3.2)

where $D = 0.06$ cm2 s$^{-1}$ [70] is the diffusion constant of O₂ in xenon at 1 amagat, $[Xe]$ is the xenon density in the volume $V_{12} + V_{23}$ (in units of amagats), and L is the characteristic interdiffusion times.

Figure 3.10: “Big Rig” assembly used to measure the laser-polarized 129Xe polarization.
length of the Big Rig. From equation \(3.2\), the interdiffusion time is roughly \(\tau \sim 3\) minutes for \(L = 20\) cm. After waiting 30–60 minutes for the gases to mix, 3000–5000 thermal \(^{129}\)Xe NMR spectra are acquired with pulse TR of 10 s. The \(^{129}\)Xe \(T_1\) in the presence of 1.3 amagat \(O_2\) in the Big Rig has been measured to be 2.3 s, so a pulse period of 10 s allows 99% of the \(^{129}\)Xe magnetization to recover between pulses. These spectra are summed to obtain the thermal signal (figure 3.11). The bandwidth, receiver gain, pulse width and pulse

![Figure 3.11: Typical \(^{129}\)Xe laser-polarized and thermal NMR signal acquired from the Big Rig at 2 T. The cell was pumped for 30 minutes for this measurement. The thermal signal is the sum of 4800 acquisitions. The \(^{129}\)Xe polarization in this case (from equation \(3.3\)) is 5.9%. The small frequency shift of the laser-polarized resonance with respect to the thermal resonance is due to transverse magnetic gradients induced by the large laser-polarized \(^{129}\)Xe sample magnetization [5].]
power are all kept fixed for the laser-polarized and thermal 129Xe measurements, and the probe Q and tuning do not change over the measurement period. The absolute polarization of the laser-polarized (LP) 129Xe is given by

$$P_{LP} = \frac{S_{LP} N_{thermal}}{S_{thermal} N_{LP}} \frac{V_{23}}{V_{12} + V_{23}} P_{thermal},$$

(3.3)

where S_{LP} is the integrated laser-polarized NMR signal, $S_{thermal}$ is the integrated thermal NMR signal, $N_{thermal}$ and N_{LP} are the number of acquisitions used to acquire the thermal and LP signal, and the 129Xe thermal polarization $P_{thermal} = \tanh (\mu B/k_B T)$ is 1.9×10^{-6} at 300 K and 2 T. The ratio of volumes in Big Rig is measured to be $V_{23}/(V_{12} + V_{23}) = 0.87$. The day-to-day repeatability of the thermal signal acquired from Big Rig is better than 5%.

3.2 Laser System and Optics

The availability of low-cost, high-power, relatively inexpensive laser diode arrays (LDAs) has been central in the ability to situate the 129Xe polarizer adjacent to the 2T MRI magnet. Previous to the development of this technology, optical pumping typically used Ti:sapphire lasers pumped by large frame Ar$^{+ +}$ lasers. Ar$^{+ +}$ lasers require 60 kW of electrical power, well-regulated high-flow cooling water, and substantial laboratory real estate. It would have been nearly impossible to install a Ar$^{+ +}$/Ti-sapphire system in the 2 T laboratory given these requirements. Additionally, these systems require constant alignment and maintenance. Two fiber-coupled laser diode arrays (OptoPower, OPC-A016-FCPS) have been the workhorses of these experiments, with each providing up to 15 watts of CW laser light. These self-contained wall-plug units have a broad spectral profile with a typical FWHM of 15–20 Å (figure 3.12). In addition to the Optopowers, a Coherent FAP 30W fiber-coupled laser diode array system was occasionally available and was used in the polarizer in place of one of the Optopowers. A computer-controlled scanning monochrometer was used to acquire spectral profiles for each laser, and the operating temperature and current were adjusted to center the laser spectral profile about the Rb D1 resonance at 794.7 nm.

The output from each 1.5 mm fiber bundle is an unpolarized beam with circularly
symmetric 12° beam divergence. The LDA light is collimated and circularly polarized with the optics assembly shown in figure 3.13 [68]. The light from each fiber is incident on an AR coated convex lens to reduce its divergence. The beam then passes through a linearly polarizing beam-splitter cube, which splits the light into two linearly polarized beams. The two output beams from the beamsplitter have orthogonal linear polarizations. In order to produce the same helicity of circularly polarized light from each beam, the λ/4 plates have their axes mounted perpendicular to each other. Each LDA has a separate set of optics, so two lasers produce 4 beams of right circularly polarized light which is incident on the OPSE cell. Spot size at the oven window for each beam is roughly 10–12 mm. Circular polarization of each beam is measured to be greater than 90%, and is typically 95%. The maximum power with the lasers lines centered on Rb D1 line was 13.8 W for each of the Optopower LDAs and 30 W for the Coherent LDA. Because of the difficulty in properly collimating and directing the beam, and due to the reflections from the uncoated oven.

Figure 3.12: Spectral profile of laser P183. This spectrum is typical of Optopower LDAs.
and cell windows, only approximately 66% of the laser power is expected to pass through the windows into the cell. The total power penetrating the cell is estimated as 18.2 W for both Optopowers (P182 + P183) together, and 28.9 W for one Optopower (P183) and one Coherent together. Furthermore, only a fraction of the laser power reaching the cell actually contributes to optical pumping due to the broad spectral profile of the diode lasers. Simulations estimate typically 0.5 W absorbed. The benefit of narrowing the laser spectral profile to 129Xe polarization is discussed in Chapter 6 [71-74].

3.3 129Xe Transport Manifold

Once polarized, 129Xe is transported from the optical pumping cell through the transport manifold for accumulation, storage, and delivery to the subject or sample. All the materials in the transport system were chosen to be both compatible with the transport of polarized 129Xe and be suitable for use in the high magnetic-field environment near the MRI magnet. In order to keep the system leak-tight against contaminants that would depolarize 129Xe (such as paramagnetic O$_2$), ultra-high vacuum (UHV) techniques are used throughout the system, however, many of the components typically used in UHV systems, such as stainless steel valves and tubing, rapidly depolarize 129Xe. Glass isolation valves are located between regions where polarized 129Xe is transported in the manifold and each UHV valve.
These glass valves are kept closed while polarized gas is transported through the system, and are operated in conjunction with the UHV valves when pumping out the manifold. The manifold is constructed out of OTS-coated Pyrex, and individual substructures, such as the OPSE cell, mate to the glass manifold with unions made from a Teflon perfluoroalkoxy copolymer resin known as PFA (Swagelok, Hudson OH).

Flexible PFA tubing is used as a very convenient way to connect the PFA plug valve at the polarized 129Xe outlet of the apparatus to the various probes and experimental platforms. The 129Xe T_1 in a 31 cm long, 1.6 mm diameter piece of PFA was measured by filling its volume with polarized 129Xe, waiting a time T, and then delivering the gas to Big Rig where an FID was acquired. The PFA tubing relaxation time calculated from the fit of a single exponential to this data (figure 3.14) is 125 ± 5 s. The longest amount of time that

![Figure 3.14: 129Xe relaxation in the PFA tubing between polarizer output valve and pneumatic valve P_2.](image)

$T_1=125 \pm 5$ s
polarized ^{129}Xe spends in this 2.5 cc volume of tubing occurs when an animal is being ventilated. The usual *in vivo* delivery rate is 1.33 cc/s, so polarized ^{129}Xe spends less than 2 seconds in this region and ^{129}Xe relaxation in PFA is not expected to contribute substantially to polarization loss. There is, however, a region of the polarizer with an extremely short T_1, measured to be 23 ± 2 s. This short T_1 region is the volume between the pneumatic valve P_1 and the polarizer output valve, and includes the Honeywell pressure gauge and the internal volume of the valve P_1. The Honeywell pressure sensor (internal volume of less than 0.1 cc) was removed but the relaxation rate in the “bad” region remained the same. Although this needs to be more carefully studied, the most likely source for this relaxation is the body of valve P_2, which is machined from Teflon polytetrafluoroethylene (PTFE).

This 8 cc “bad” region was discovered because it causes significant depolarization if ^{129}Xe is allowed to sit in this region between runs. During a typical *in vivo* run, we expect less than a 10% loss of ^{129}Xe polarization due to this region—not a significant problem in normal operation. However, if the *in vivo* delivery of polarized ^{129}Xe needs to be paused for more than a few seconds, the volume up to the gas storage “syringe” should first be evacuated to pump out the depolarized ^{129}Xe.

3.3.1 Estimate of ^{129}Xe transport losses

Polarized ^{129}Xe flowing through the delivery system moves through a non-uniform magnetic field. In order to transport ^{129}Xe magnetization to the subject or sample without loss of polarization, the local magnetic field must change slowly enough that the nuclear spins are able to follow it adiabatically. The polarizer apparatus is situated so that it is convenient to describe an inhomogeneous magnetic field as a combination of a large static field along the direction of the 2 T solenoid, $B_0 \hat{z}$, and a smaller perpendicular component *i.e.*,

$$ B = B_0 \hat{z} + B_x \hat{x} + B_y \hat{y}. \quad (3.4) $$

The angle between the total field and \hat{z} is given by θ, where
\[
\tan \theta = \frac{B_\perp}{B_\parallel},
\]
where \(B_\perp\) is defined as
\[
B_\perp \equiv \sqrt{B_x^2 + B_y^2}.
\]

Adiabatic transport occurs when the nuclear spins, initially aligned along \(z\), are able to follow the changing direction of the magnetic field. This adiabatic condition is written
\[
\frac{d\theta}{dt} \ll \gamma B
\]
For polarized gas moving with an arbitrary velocity with respect to the field, we can write
\[
\frac{d\theta}{dt} = v_x \frac{d\theta}{dx} + v_y \frac{d\theta}{dy} + v_z \frac{d\theta}{dz}.
\]
Solving equation 3.5 for \(\theta\) in the small angle approximation, equation 3.8 becomes
\[
\frac{d\theta}{dt} = v_x \frac{B_\perp}{B_\parallel} \left(\frac{d}{dx} \frac{B_\perp}{B_\parallel} \right) + v_y \frac{B_\perp}{B_\parallel} \left(\frac{d}{dy} \frac{B_\perp}{B_\parallel} \right) + v_z \frac{B_\perp}{B_\parallel} \left(\frac{d}{dz} \frac{B_\perp}{B_\parallel} \right).
\]
Neglecting terms of order \(\theta^2\), equation 3.9 can be written
\[
\frac{d\theta}{dt} \approx \frac{v \cdot \nabla B_T}{B_\parallel}.
\]
The most stringent requirement on \(d\theta/dt\) is found when the gas is moving along the direction of \(\nabla B_T\). In this case, the adiabatic condition combining equation 3.7 and equation 3.10 is
\[
|v| \ll \frac{\gamma B_\parallel^2}{|\nabla B_T|}. \tag{3.11}
\]
The mean magnetic field at the optical pumping cell in our experiments is \(B \sim 500\) gauss with \(|\nabla B_T| \sim 12\) gauss/cm. In this case, the adiabatic condition is satisfied for gas velocities...
Given the absence of large transverse magnetic field gradients in the vicinity of the 2 T magnetic (typically less than 15 gauss cm$^{-1}$) and typical molecular speeds of order 104 cm s$^{-1}$ [75], the adiabatic condition of equation 3.11 is generally irrelevant in laboratory practice and 129Xe atoms will always adiabatically follow the local direction of the magnetic field.

3.4 Polarized 129Xe Accumulation

A batch mode production method is used to accumulate large volumes of polarized 129Xe. This exploits the long lifetimes of 129Xe in the OTS-coated OPSE cell at 450 Gauss (typically 300–600 seconds) and the extremely long lifetimes achievable in the frozen state [76]. The relaxation rate of frozen 129Xe is magnetic field dependent up to about 500 Gauss, and in many experiments [77] a permanent magnet is used to reduce relaxation in the frozen 129Xe by storing the sample at high magnetic field [29]. In this experiment, the magnetic field (provided by the fringe field of the 2 T magnet) at the ice storage cell is 500 Gauss. The 129Xe ice relaxation time ($T_{1\text{ice}}$) at LN$_2$ temperature in this field was measured (figure 3.15) to be 1 hour. Significantly longer relaxation times are obtainable at lower temperatures [78]. The polarized gas mixture is pumped from the OPSE cell through the evacuated ice storage cell. The ice storage cell is a 5 cc OTS coated Pyrex trap immersed in LN$_2$. Xenon freezes and remains in the storage cell while the N$_2$ gas is pumped away. Cryotrapping [79, 80] occurs in mixtures of condensable and non-condensable gases and can prevent complete xenon accumulation. The geometry of the freezing cell and the turbulent flow of gas through it minimizes cryotrapping. Additionally, the pumping of the hot gas mixture from the OPSE cell through room-temperature tubing into the cryogenic trap cools the gas and rapidly reduces the Rb vapor pressure. This prevents significant Rb vapor from being delivered to the subject or sample. It should be noted that after four years of running, no evidence has been observed to indicate that Rb accumulates in the cryogenic trap. The polarization/accumulation cycle is repeated several times over 20–30 min to accumulate additional polarized xenon as ice.
3.5 Polarized 129Xe Gas Storage

Once a sufficient volume of polarized 129Xe has been accumulated as ice, the ice is thawed for subsequent delivery to the subject or sample. The polarized gas storage system receives the polarized 129Xe after it has been thawed, and is used to provide a constant pressure polarized 129Xe source for our experiments. The gas storage assembly resembles a large syringe, consisting of a gas storage cell and a piston. The gas storage cell is a precision bore, 7.6 cm diameter, 25 cm long Pyrex cylinder internally coated with OTS. The Teflon piston, with a teflon-encapsulated viton O-ring (International Seal, Henderson, NV), fits inside
this cylinder and seals gas-tight. One end of the cylinder is welded to a piece of 6 mm Pyrex tube, and a thick bead is pushed out at the open end. The beaded end of the cylinder is sealed to a Nylatron cap with a Teflon-lined beaded-pipe clamp.

The cylinder is evacuated and pressurized through the 6 mm Pyrex tube via the 129Xe transport manifold. The space behind the piston is pressurized or evacuated via a connection in the plastic cap. The piston is initially located at the back of the cylinder. The 1 Liter cylinder volume is subsequently evacuated via the gas transport manifold. The xenon cryotrap is rapidly thawed, and the polarized gas freely expands into the storage cylinder. The valve between the cryovessel and the syringe is closed and a N$_2$ source provides back pressure to the piston producing a constant pressure polarized 129Xe source for the delivery system. The magnitude of the 129Xe NMR spectrum vs. time acquired from a volume probe around a 0.7 cc glass vial is shown in figure 3.16, where 1.2 cc (±5%) of 129Xe was

Figure 3.16: Determination of “syringe” T$_1$. A fit of a single exponential yields a syringe T$_1$ of 1076±71 s.
delivered every second for 220 s. The signal decreases rapidly after delivery from the storage syringe was stopped due to repeated 25° tips of the same gas. The 129Xe gas polarization lifetime (T_1) in the “syringe” is roughly 18 minutes with no observed dependence on the position of the piston in the cylinder (i.e., the surface-to-volume ratio).

3.6 Polarized 129Xe Delivery

After accumulation, the syringe contains polarized 129Xe gas. This is to be delivered in a controlled manner and with a minimal loss of polarization to the subject or sample located in the center of the NMR imaging system. The polarized gas delivery system transports polarized 129Xe continuously at a fixed rate or in metered volumes to a sample, and in single breath doses to an animal subject. The repeated delivery of small volumes of polarized gas to an animal subject allows for averaging of signals over repeated inhalations and is essential for systematic studies in vivo. Polarized 129Xe is transported from the gas storage system to the sample or animal without coming in contact with oxygen. This is critical to ensure low loss of 129Xe polarization. For in vivo work, O$_2$ is precisely mixed with polarized xenon at the animal interface via the air bypass needle valve. The control of remotely activated valves allows complete automation of the delivery cycle and the operational procedure described below.

3.6.1 Operation

The volume between the pneumatically actuated Teflon valves P_1 and P_2 (M222CPFS-T, Teqcom Industries, Santa Ana CA) serves as a ballast volume. The pneumatic valves (P_i) are controlled via solenoidal valves (S_i), which are outside the high magnetic field environment of the NMR magnet. These solenoidal valves are driven by the control electronics. A non-magnetic pressure transducer (136PC100G2, Honeywell Microswitch, Freeport IL) mounts into the glass transport manifold via an O-ring seal and senses the ballast volume pressure, P_{mon}. The control electronics package circuitry monitors the ballast volume pressure. The control electronics fill the ballast volume with polarized 129Xe to a set pressure by actuating P_1. The polarized 129Xe in the ballast volume is then delivered directly to the sample or subject by actuation of P_2. A Teflon-stem needle valve (Chemglass, Vineland
NJ) provides a variable gas conductance between the xenon syringe and the gas delivery system. This valve is adjusted to match the rate of gas flow to the switching speed of the pneumatic valves. P_1 is mated to the glass transport manifold, and P_2 is an integral part of the experimental platform containing the NMR probe and the sample or subject, located near the center of the magnet. P_2 mates to a Teflon PFA (Swagelok, Hudson OH) plug valve on the delivery system via PFA tubing. This flexible tubing is minimally depolarizing over the typical resonance time of gas in the tubing (T_1 of about 125 sec), and the ease of connection to the system allows for rapid removal and installation of the experimental platform in the magnet.

3.6.2 *In vivo* xenon delivery cycle timing

The delivery stage of the polarizer is controlled by a package of analog and digital circuitry (figure 3.17, figure 3.18, and figure 3.19), which is responsible for control of the volume of delivered gas, and the delivery cycle decision making. In a typical *in vivo* experiment, a 200–500 g rat is anesthetized, and a non-metallic endotrachial tube is placed in the airway. The animal is placed on the experimental platform, which contains the NMR probe and valve P_2. The connection to the delivery system is made, and the ballast volume is evacuated. The animal is normally ventilated on a commercial small animal ventilator (Harvard Apparatus model 683) until the “xenon-enable” switch is engaged, at which time the xenon breathing cycle commences. The xenon delivery control logic is clocked by the commercial ventilator. An operational timing diagram is shown in figure 3.20. The xenon breathing cycle begins by waiting until the end of the exhalation cycle, at which point S_4 is opened, venting the ventilator through to air a vernier needle valve. This vernier valve allows for precision regulation of the fraction of breathing gas (typically O_2 or 95% O_2/5% CO_2) to be mixed with polarized xenon at the animal (figure 3.21). At the start of the inhalation cycle P_1 opens. The pressure P_{mon} of the xenon in the ballast volume is continuously compared to the set-point pressure, P_{set}. P_{set} uniquely determines the tidal volume of polarized 129Xe delivered to the animal each breath. When $P_{set} = P_{mon}$, P_1 is closed and P_2 is opened, allowing the gas to flow to the animal. The animal exhalation cycle takes place as usual, through the ventilator exhaust. The animal can be switched back to breathing air by disengaging “xenon-enable”, causing the xenon delivery system to finish its cur-
rent xenon breathing cycle, and closing S_d at the beginning of the next inhalation cycle. If the xenon pressure in the ballast volume P_{mon} does not reach P_{set} within the inhalation
cycle, the polarized ^{129}Xe is not delivered, and the animal exhaust cycle is respected. The xenon delivery system then commences a pressure building sequence, until $P_{\text{set}} = P_{\text{mon}}$. If the xenon pressure in the ballast volume P_{mon} does not reach P_{set} within a selectable number of cycles, the pressure building sequence will time-out and return the animal to normal ventilation. If the xenon pressure in the ballast volume accidently exceeds the tidal set point P_{set}, no xenon will be delivered, and the animal is returned to normal ventilation. The ballast volume can be pumped out when xenon breathing is disabled through P_3. Flow of xenon from the animal back to the commercial ventilator is prevented by a one-way glass valve in the respirator line, at the animal subject.

3.6.3 Performance and calibration

The amount of xenon delivered to the subject or sample is determined by the ballast volume V_b (i.e., the volume between valves P_1 and P_2) and the delivery pressure setpoint P_{set}. Once the delivery pressure setpoint is reached, valve P_2 opens and gas is delivered until the ballast volume reaches atmospheric pressure. The amount of xenon delivered N_{Xe} is simply

$$N_{\text{Xe}} = \frac{P_{\text{set}} V_{\text{ballast}}}{T},$$

(3.12)
Figure 3.20: Timing diagram for xenon delivery summarizing the key operational elements described in the text. The time interval δ_i is controlled by the electronics package.
where P_{set} is the pressure setpoint above equilibrium pressure with the sample (atmospheric pressure for a rat), $V_b = 10.9$ cc, and T is the laboratory temperature. The ballast pressure gauge is calibrated to read in units of PSIG, to which an offset is added by the control electronics to keep the comparator away from 0 volts near the typical 1 atm gauge operating pressures. In terms of the control panel settings then the amount of xenon delivered at 23 °C is

$$N_{\text{Xe}} = 0.74P_{\text{set}} - 1.18,$$

where N_{Xe} here has units of cc atm, and P_{set} has units conveniently called “PSIGO” (i.e., PSI Gauge with Offset) on the control electronics box. The performance of the xenon delivery stage is shown in figure 3.22. Small adjustments to the Teflon-stem needle valve appreciably affect the gas conductance and can significantly affect the operation of the

Figure 3.21: Volume of breathing gas delivered as a function of bypass needle valve setting, with ventilator set to deliver 2.5 cc per breath.
Figure 3.22: Xenon delivery performance: ballast pressure P_{mon} measured during an *in vivo* run. The variance of δ by the control electronics is easily seen at $t = 34$ s. In this run, however, the ballast volume did not completely exhaust before P_2 closed at the beginning of the exhaust cycle, preventing complete xenon delivery to the subject. Delivered gas volume for this run was 1.37 ± 0.07 cc-atm.

delivery stage. For this reason, the volume of gas delivered is always measured using a calibrated glass syringe at the experimental platform; any adjustment of the needle valve requires that the delivery volume be remeasured.

3.7 Experimental Platform

This section describes the experimental platform, and the overall delivery system’s *in vivo* performance. The experimental platform (figure 3.23) is the modular interface between the polarizer and the subject or sample. This Nylatron platform contains the NMR probe,
pneumatic valve P_2, animal pulse-oxymetry probe, and the hot water blanket used for maintaining animal temperature. All individual components are attached to the platform with non-magnetic nylon screws. The platform also contains a Teflon PFA needle valve through which polarized 129Xe flows before reaching the animal. The variable conductance of this valve is adjusted to smooth the xenon pressure profile and provides a more physiologically appropriate pressure profile (figure 3.24). A miniature glass one-way valve on the platform prevents backflow of xenon into the breathing gas supply line. CO_2 can be introduced either into the breathing mixture or titrated directly to the animal via small-bore Tygon tubing, which minimizes dead space.

3.7.1 RF probes
The RF coils used for pulsing and detecting the ^1H and ^{129}Xe frequencies (23 MHz and 85 MHz at 2 T, respectively) are part of the experimental platform. These tuned antennas
have a high Q factor (typically greater than 100 unloaded). At the Larmor frequencies in this experiment, the attainable probe Q is limited by dielectric losses due the presence of the sample in the probe. We use two different coil geometries for our in vivo rat experiments depending on the region to be studied. Whole body experiments require sensitivity over a large volume of the subject, while experiments in more localized areas of interest (such as the head) can be effectively studied using smaller probes. The goals for all of the RF coils are RF homogeneity over the sample region and a design for which the subject or sample can be loaded easily into the coil.

The first “volume” probes we used were built on cylindrical acrylic forms. These had excellent RF homogeneity, but the task of squeezing an animal into the tight-fitting probe from the end while trying to maintain an airway connection proved extremely difficult. The volume coil geometry that proved to be useful for the whole-body experiments with rats is a split cylinder built on a glass form. This is a “clam shell” design; the bottom half of the probe is bolted to the experimental platform and the top half can be removed so that

Figure 3.24: Delivery pressure vs. time profiles measured at animal with an in-line pressure transducer. (A) Mechanical ventilator. (B) Xenon delivery. (C) Xenon delivery with PFA needle valve in place. Horizontal scale is 40 ms per small division, vertical scale is 1×10^{-2} PSIG per small division.
the animal subject can be inserted. The electrical connections between the two halves are soldered once the animal is in place. The resonator circuit is a slotted resonator built in our lab (figure 3.25), based on the design by Alderman and Grant [81]. The volume coil has the advantage of high RF homogeneity, but because of its large size, it suffers from low filling factor (and consequently low SNR) if it is used to study regions where only a fraction of the total volume contributes to the detected signal. The sensitivity can be improved for small areas of interest with the use of surface coils, which have the advantage of a high filling factor and can be geometrically matched to the region of interest. A three-turn doubly-tuned 1H-129Xe “surface” coil with a 3.5 cm diameter was constructed (figure 3.26) and used for all of the in vivo head studies in this thesis. This single-coil double-resonance probe uses a variable length transmission line as one of the tuning elements, and is based on the design of Cross, et al. [82]. The sample coil is positioned between two cables of length $\lambda/4$ (where λ is the higher frequency wavelength in the cable). One of these is shorted at the far end, and one remains open. Detailed analysis of this probe construction is given by Cross, et al. [82].

Conventional NMR RF coil geometries, such as solenoidal and saddle-shaped coils, have a large size relative to the volume-of-interest under investigation. Surface coils, however, can be relatively small and placed adjacent to a larger object. Thus, the surface coil receiver can obtain a higher SNR than conventional coils and also has the advantage that its geometry can be designed to suit the object under study. Surface coils and volume coils

Figure 3.25: Dual tuned volume probe.
differ greatly in the RF field they generate. Volume coils generate, in principle, a homoge-
neous RF field over the region in which the sample is placed. Surface coils on the other
hand produce a highly inhomogeneous RF field, where B_1 decreases with increasing dis-
tance from the coil. The inhomogeneity of the B_1 RF has major experimental implications
since the coil is used not only as a signal receiver but also for RF pulse transmission. The
tip angle generated by a conventional RF pulse is given by

$$\alpha(r) = \gamma \int_0^T B_1(r, t) dt$$

(3.14)

where $\alpha(r)$ is the tip angle at position r, $\gamma B_1(r)$ is the RF field strength at position r, and T
is the RF pulse duration. The ^{129}Xe tip angle for several pulse durations and RF ampli-
tudes is measured for each NMR probe with a glass vessel filled with polarized ^{129}Xe. The
^{129}Xe magnetization is repeatedly tipped by an unknown angle α, and the FID is detected
from each pulse. The tip angle α is determined by fitting the NMR signal as a function of
pulse number n to

$$S(n, \alpha) = M_0 \sin \alpha (\cos \alpha)^{n-1}.$$

(3.15)

The T_1 of ^{129}Xe in this vessel is approximately three hours, making it trivial to make mea-
surements on a time scale fast with respect to T_1; typically 16–64 pulses with a total acqui-
sition time of less then 1 minute. For the homogeneous volume probes, α determined in
this way is an average of the relatively uniform tip angle throughout the probe. For the
surface coil, a magnetic gradient is applied in the direction normal to the coil to encode the
spatial dependence of the tip angle and to determine the mean tip angle in the region containing the sample.

RF pulses based on adiabatic spin rotation [83-86] have also been developed and are part of a class of pulses known as BIR (B$_1$ Insensitive Rotation). These adiabatic pulses generate a uniform tip angle from a surface coil despite spatial variations in B$_1$ (even over two orders of magnitude), provided that the B$_1$ field is above a threshold value. With BIR pulses, the high sensitivity of surface coil receivers is be combined with uniform sample excitation. These adiabatic pulses have the additional advantage that they eliminate the calibration of RF power between experiments. BIR pulses were investigated late into the studies in this thesis and likely applications are to be discussed in Chapter 5.

3.7.2 In vivo performance

The overall performance of the delivery system is illustrated in figure 3.27. The magnitude of the 129Xe NMR signal from the lungs of a live rat ventilated for over 1 minute with 60% xenon and 40% O$_2$. The Xe/O$_2$ mixture was delivered in 2.2 cc breaths at 80 breaths per minute. The rat was located on the experimental platform at the center of the magnet. A surface coil tuned to the 129Xe gas resonance was placed on the thorax of the animal. The 129Xe signal saturates and can be maintained for extended times with continued inhalation of polarized 129Xe. This constant input magnetization is essential for 129Xe magnetic tracer studies, and we have performed in vivo studies with 1:1 Xe/O$_2$ mixture for run times exceeding 4 minutes with similar results.

3.8 Optimization and Operation

Optimization of the OPSE parameters for many types of experiments that use polarized gases is straight-forward: either the noble gas polarization or the magnetization (i.e., the product of polarization and volume) is maximized, depending on the details of the experiment. Laser-polarized nuclear targets [1, 2, 67, 68], neutron spin filters [3, 41], magnetometers [4, 5], and masers [6-8, 66] are all closed systems with the experiment performed in their sealed OPSE cells. These cells are typically pumped up and run at their steady-state polarization for the duration of the experiment.
A somewhat different approach is required when there is an animal connected to the output of the polarizer. The final 129Xe polarization in spin-exchange optical-pumping is a compromise between the production volume and the polarization rate. A small amount of gas polarized at low rate of production to a very high polarization (e.g., 50 cc atm at 50% polarization in 1 day) has very little practical use in steady-state *in vivo* tissue imaging experiments, where typical tissue saturation times are on the order of 30 seconds and 100 cc atm are used per minute of rodent ventilation time. Additionally, NMR spectroscopy and imaging sequences take time. In particular, the optimal NMR pulse repetition time (TR) for a given pulse sequence depends on the tissue perfusion rate, so for many types of *in vivo* experiments the total experimental duration, and consequently the amount of polarized xenon needed, is fixed by the choice of NMR sequence and basic physiology. The highest obtainable polarization of this fixed amount of xenon provides the maximum

Figure 3.27: Magnitude of 129Xe gas spectrum vs. time acquired from a surface coil placed on the rat thorax. Spectra were acquired every 500 ms. NMR acquisition was triggered by delivery valve P_2. The 129Xe polarization was approximately 4% in this experiment.
SNR.

An additional constraint on *in vivo* polarizer operation is the need to perform as many experiments as feasible in an imaging day (which is limited by the achievable duration of rodent anesthesia—8 or 9 hours). Additionally, cell filling and gas handling valves are manually operated, so polarizer cycle times need to be physically realizable. We have found that four polarizer cycles, roughly 550 cc of gas and corresponding to more than 4 minutes of ventilation, is a good amount per “run”. Each in vivo run may consist of several 129Xe spectroscopy or imaging experiments. Cycling the polarizer every 5 minutes and accumulating xenon for four cycles also allows enough time to acquire 1H images between 129Xe experiments. Our operational approach is to maximize the polarization of this volume of gas in the minimum time possible. This is the principle that guides polarizer optimization for this experiment, and is now described in the context of polarizer operation.

After a polarizing time Δt, the 129Xe polarization in the OPSE cell is (from equation 2.20)

$$P_{Xe}(\Delta t) = P_{Xe}^{\infty} \left(1 - e^{-\frac{\Delta t}{T_{spinup}}}\right).$$

(3.16)

After N accumulation cycles (i.e., a total time of $N\Delta t$), the polarization of the 129Xe ice is

$$P_{final}(N \cdot \Delta t) = \frac{1}{N} \sum_{m=1}^{N} P_{Xe}(\Delta t)e^{-\frac{\Delta t(m-1)}{T_{1}^{ice}}}.$$

(3.17)

The final polarization of the 129Xe for a desired volume is maximized by appropriate choice of P_{Xe}^{∞}, T_{spinup}, and Δt. P_{Xe}^{∞} is computed using the numerical integration method described in section 2.3 over a range of Xe pressure and cell temperature (T) for a given cell geometry and laser spectral profile. The optimal values for the parameters T and Δt are then found by maximizing P_{final}, the maximum attainable 129Xe polarization. In our experiments, the polarizer cell is filled with 1700 Torr of Xe, resulting in 148 cc-atm of Xe polarized per cycle. If a small volume of polarized Xe is desired, the total number (N) of polarization cycles needed is small, and the loss of 129Xe polarization due to T_{1}^{ice} is negligible since the total accumulation time $N\Delta t \ll T_{1}^{ice}$. In this case, P_{final} is optimized with a longer pumping time, Δt.

63
Large volumes of 129Xe require many OPSE production cycles, which results in a longer total accumulation time, $N\Delta t$. As a result, individual batches of polarized 129Xe may spend a significant fraction of T_{1}^{ice} in the frozen state. In order to prevent large polarization losses due to T_{1}^{ice}, the cycle time Δt must decrease. A sufficient increase in γ_{SE} is achieved with a corresponding increase in OPSE cell temperature.

Calculations of P_{final} as a function of Δt, for several values of N, are shown in figure 3.28. As in section 3.1.5, calculations of P_{final} agree with experiment to better than a factor

![Figure 3.28](image)

Figure 3.28: Calculation of P_{final}, the polarization of frozen 129Xe after N accumulation cycles, as a function of polarizer cycle time, Δt. The total accumulation time is $N\Delta t$, and 148 cc-atm of xenon is polarized each cycle. Note that the Δt for which P_{final} is maximal decreases with increasing N. The cell temperature, T, indicated for each curve has been chosen to maximize P_{final}. This optimum T for each curve also increases with N.

64
of 2, and are typically a factor 1.4 greater than the calibrated 129Xe polarization measurements.

From figure 3.28, the rate at which polarized 129Xe is produced depends on the desired final polarization. The final polarization and production rate for the most common polarizer operational configurations is now given. All of these measurements were made with Cell 5, using one Optopower LDA (P183) and one Coherent LDA providing an estimated 29 W into the cell. A single ($N = 1$) batch, polarized (at 100 °C) for $\Delta t = 5$ minutes results in 148 cc-atm of xenon at 5.3% polarization. As above, this polarization measured with the “Big Rig,” and is a lower limit of the 129Xe polarization in the OPSE cell.

A 1:1 Xe/O$_2$ mixture for in vivo ventilation of rats requires roughly 100 cc of polarized Xe per minute of ventilation time, and our NMR spectroscopy and imaging experiments typically last 2–4 minutes. Thus for most all of the in vivo experiments, the system is operated for $N = 3$ cycles, with cycle time $\Delta t = 5$ min. This results in 440 cc-atm of Xe polarized to a measured final polarization of 4.5%. In practice, the system cycle time is longer than the 5 minute batch polarization time, since the manual operation of the valves associated with the OPSE cell adds typically about 50 seconds per batch. Modifications could be made so that OPSE cell valves are fully automated thus minimizing this delay. Nevertheless, in its current configuration, 440 cc-atm of Xe are produced in approximately 17.5 minutes to roughly 4.5 % polarization. Although impractical for rodent experiments, $N = 7$ was tried as an measure of overall system production. With a cycle time $\Delta t = 5$ minutes and the cell at 115 °C, 1033 cc-atm of xenon was polarized to 3.8% in roughly 45 minutes.
Chapter 4

Distribution and dynamics of laser-polarized 129Xe magnetization in vivo

This chapter presents NMR and MRI studies of laser-polarized 129Xe in living rats. When we began this research many of the critical NMR parameters were entirely unknown, such as the in vivo 129Xe relaxation times in blood and tissue. These studies demonstrate that inhaled laser-polarized 129Xe magnetization delivered by inhalation survives transport from the lungs to the more distant organs where 129Xe NMR signals can be observed. The results of this work include the observation, assignment, and dynamic measurement of 129Xe resonances in the brain and body, the first chemical-shift-resolved images of 129Xe in blood, tissue, and gas in the thorax, and the first images of 129Xe in the brain [25, 28, 87, 88].

This chapter compiles our in vivo results, emphasizing those essential to evaluate the feasibility of a laser-polarized 129Xe magnetic resonance tracer method for the measurement of tissue perfusion in vivo. We hypothesize the biological origin of several in vivo 129Xe resonances and support these assignments based on analysis of in vivo 129Xe resonance spectroscopy, dynamic uptake, and spatial localization.

4.1 General Experimental Details

This section describes the general experimental details common to all of the in vivo 129Xe magnetic resonance experiments described in this thesis, including animal handling and positioning. These experiments were performed on a Omega CSI spectrometer manufac-
tured by General Electric (Fremont, CA) interfaced to a 2.0 T Oxford magnet (17 cm diameter horizontal bore) equipped with self-shielded gradients. All of the in vivo experiments in this work are performed with 200–600 gram Sprague-Dawley rats, a purebred strain of Rattus norvegicus. All animal procedures were performed under a protocol approved by the University Committee on the Use and Care of Animals (UCUCA), and approximately 25 animals were used during the course of this research. Rats are anesthetized initially with an intraperitoneal injection (0.75 cc/kg body weight) of a ketamine/xylazine mixture (57 mg/mL ketamine, 8.5 mg/mL xylazine). A 2 inch, 14 or 16 gauge endotracheal tube is placed by trachiotomy and anchored with suture. The endotracheal tube is a two inch Teflon Angiocath I.V. catheter (Becton Dickinson Vascular Access, Sandy, Utah). Rats are ventilated with a small animal ventilator (Harvard Apparatus, South Natick, MA) at 80 breaths per minute with 2.5 cc per breath of either pure O₂ or a mixture of 95% O₂/5% CO₂. Anesthesia is maintained with Halothane (0.5–1.5%) using a calibrated vaporizer (Fluotec, NY). Pulse rate and O₂ saturation is continuously monitored with a pulse oximeter (Nonin, Plymouth MN) via a photo transducer pair wrapped around the tail. Halothane levels are adjusted to keep the cardiac rate typically 200 BPM, although this rate depends on the size of the animal and is adjusted accordingly. Body temperature is maintained by a 37 °C warm water blanket beneath the animal. The rat is placed supine on the experimental platform (see figure 3.23) and, depending on the region of interest, either inside the doubly-tuned ¹H-¹²⁹Xe volume probe or with the top of the head resting in the center of the doubly-tuned surface coil. The platform assembly is placed into the magnet for NMR study, and mated to the output of the polarizer. ¹²⁹Xe is polarized, stored, and delivered to the animal as described in section 3.6, for between 32 seconds and 4 minutes. The xenon fraction is typically 35–60% of the delivered breathing mixture (although 100% xenon was used in our earliest brain work [25]). NMR pulsing and signal acquisition is cardiac gated for thoracic studies, i.e., at the same point in the rodent cardiac cycle.) After xenon delivery and study, the animal is switched back to normal ventilation, and proton imaging performed. The spectrometer is switched between ¹²⁹Xe NMR/MRI and ¹H imaging many times throughout the study, typically every 20–25 minutes. Following study, the animal is euthanized either through hypercapnia or with an overdose of pentobarbitol. A typical in vivo study lasts 8 hours.
4.2 *In Vivo* 129Xe Spectroscopy

NMR spectroscopy of noble gases has a long history, with the first NMR signals from 129Xe and 131Xe detected in 1951 [89]. Of the nine stable xenon isotopes only 129Xe and 131Xe have non-zero nuclear spin. Of these 129Xe is the most widely studied by NMR spectroscopy. 129Xe is a spin 1/2 nucleus with gyromagnetic ratio $\gamma = -7.3995 \times 10^7$ rad T$^{-1}$s$^{-1}$ and a relatively high natural abundance of 26.44%. The lack of a quadrupole moment in 129Xe contributes to extremely long longitudinal spin relaxation times (T_1), facilitating *in vivo* use. Xenon is highly soluble in blood with an Ostwald coefficient ~ 0.17 [90], and more so in lipids [18, 90-93], and once in the body accumulates in highly-perfused lipid-rich tissue. The large, polarizable xenon electron cloud makes 129Xe sensitive to its local environment, and results in the very large chemical shift range (several hundred ppm) observed in 129Xe spectroscopy [94, 95]. These chemical shifts strongly depend on the structure of the medium and as a result 129Xe NMR has been used to study polymers, porous media, microporous membranes, liquid crystals, zeolites, and surfaces [96-109].

Spectroscopic studies were the first experiments we performed in order to determine the feasibility of *in vivo* 129Xe NMR and to evaluate the range of chemical shifts *in vivo*. Once a laser-polarized 129Xe gas mixture is inhaled, it fills the airspaces of the lungs and is carried to tissue where it accumulates. A major challenge is the efficient delivery of 129Xe magnetization to blood from the lungs, and to tissue by the circulation. The 129Xe longitudinal relaxation time (T_1) of 129Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. Therefore, the signal from 129Xe in tissue depends critically on 129Xe T_1 in blood. The T_1 of 129Xe in blood and other tissues was unknown at the beginning of our research and *in vivo* measurement presented many experimental challenges—in fact, *in vitro* measurement of the 129Xe blood T_1 and its dependence on blood oxygenation level still remain uncertain [24, 110-113]. We instead took the approach of direct investigating of the *in vivo* transport of 129Xe magnetization with NMR spectroscopy. These studies demonstrated that the 129Xe blood T_1 was sufficiently long for *in vivo* 129Xe NMR studies, and paved the way for the our more detailed

1. The Ostwald solubility coefficient is the ratio of the volume of gas at 1 atm that can be dissolved in a unit volume of liquid to the total volume of gas.
time- and spatially-resolved studies.

4.2.1 Whole body spectroscopy

The potential for magnetic resonance studies with dissolved-phase 129Xe was explored through in vivo 129Xe spectroscopy experiments using the NMR “volume” probe described in detail in section 3.7.1. This large cylindrical antenna (14.5 cm long and 6.0 cm diameter) encompasses the entire rat body. The detected 129Xe signal in these experiments comes from the distribution of 129Xe magnetization excited throughout the entire sensitive volume of the RF coil, i.e., the entire rat body. Spectroscopy was performed using a broadband 10 μs RF pulse with an estimated 13° tip angle (averaged over the probe volume). The spectrometer spectral width was set to 10 kHz in order to span both the gas and tissue-dissolved 129Xe spectral regions. After each RF pulse, free-induction decay (FID) signals (1024 data points) were collected in 350 ms. The RF pulse repetition time (TR) was determined by the cardiac signal measured with the pulse oximeter, and for these experiments the cardiac rate was 280 BPM, thus resulting in a 428 ms TR. Each FID in the final dataset is the sum of two phase-cycled acquisitions, and the effective TR is 856 ms.

The time-domain data was processed by multiplication with a 20 Hz exponential filter, a process commonly known as “line-broadening.” Line broadening efficiently reduces the noise amplitude in the frequency domain, provided the time constant of the filter is matched to the effective FID decay time (i.e., T_2^*) [12]. The time-domain data was then Fourier transformed and phased.

Three datasets were acquired from a single animal during 40 seconds of Xe/O$_2$ (1:1) inhalation, with roughly 5% 129Xe polarization. Each dataset was processed as described above, and then summed over time. The three summed spectra were averaged together. The in vivo NMR spectrum of laser-polarized 129Xe in the rat body obtained from this procedure is shown in figure 4.1.

The spectrum of figure 4.1 reveals an important feature of in vivo 129Xe spectroscopy; the chemical shift of xenon is very dependent on its biological environment. Relative to

1. The phase of the NMR signal depends on the RF pulse phase, and change of the RF phase by 180° results in signal inversion. The subtraction of two phase-cycled signals results in the coherent superposition of successive FIDs while reducing the background noise and elimination of DC offsets.
In order to understand the origin of the dissolved-phase 129Xe resonances, a second in vivo NMR spectrum of 129Xe in the rat body acquired at 2 T. The spectrum shows chemical shift peaks indicative of 129Xe dissolved in blood, tissue and fat at 209, 198, and 191 ppm, respectively. The gas resonance is set to 0 ppm. The tip angle used to acquire this spectrum was 13°, sufficiently small to allow 129Xe magnetization to accumulate in tissue and fat compartments reached by blood flow. The RF pulse width was 10 μs, and TR = 428 ms. The 129Xe polarization was roughly 5%. Resonance assignments are discussed in the text.

the 129Xe gas resonance set to 0 ppm, three other 129Xe resonances are observed 190–210 ppm away. These lie in the range of the typical “solvent” chemical shifts for solution phase 129Xe in biological fluids (c.f., 196, 198, and 200.6 for 129Xe in water, olive oil, and egg lecithin, respectively [94, 114]), and we will refer to them as dissolved-phase 129Xe resonances.
vivo was spectrum was acquired with the RF pulse duration increased to 200 μs and the pulse frequency moved to center it about the solution-phase frequency. Under these conditions, this narrow-band excitation RF pulse has little power at the gas resonance frequency, which minimizes the destruction of longitudinal gas phase 129Xe magnetization due to repeated RF pulsing. Polarized 129Xe gas in the lungs is the source for 129Xe magnetization in the body, and in general the destruction of longitudinal gas magnetization by NMR pulsing should be minimized if study of solution-phase signals is the primary interest. The tip angle for this experiment was measured to be roughly 30° for the dissolved-phase resonances and estimated to be approximately 1° for the 129Xe gas. A dataset of 64 spectra were acquired from a single experiment acquired during about 25 seconds of Xe/O$_2$ (1:1) delivery, and the individual spectra were processed as above. The time-averaged spectrum is shown in figure 4.2.

A least-squares fit of the sum of four independent Lorentzians (with a common baseline) to the spectrum of figure 4.2 was performed. The chemical shifts and widths (FWHM), obtained from the fit are given in table 4.1. Support for the biological assignments of the **in vivo** 129Xe resonances will be given throughout this chapter, it will be shown that the 129Xe NMR resonances of figure 4.1 and figure 4.2 are consistent with 129Xe gas (0 ppm), and 129Xe dissolved in blood (209 ppm), tissue (198 ppm), and fat (191 ppm). For clarity, these 129Xe resonances will be referred to by their assignment. The effective T_2^* for each resonance was determined by the FWHM (Γ) of the individual Lorentzian fit,

$$T_2^* = \frac{1}{\pi \Gamma}, \quad (4.1)$$

and is approximately 2 ms for 129Xe dissolved in blood and in tissue, 7 ms for 129Xe dissolved in fat, and 5 ms for 129Xe gas in the lungs.

The differences in the relative intensities of the dissolved-phase 129Xe resonances in figure 4.1 and figure 4.2 are a consequence of the tip angle used to acquire them. The 129Xe magnetization in blood arises from very rapid exchange with alveolar gas and in general, increased sampling of the blood resonance will result in an increased signal. This is quite different from the behavior of 129Xe magnetization in compartments which are reached by
blood flow, such as tissue and fat in the body, and is an important property of dissolved-phase 129Xe magnetization in vivo: the relative intensities of 129Xe magnetization in blood and in perfused tissue depend on the rate of perfusion to, and destruction in, these biological compartments. The choice of NMR tip angle and sampling rate has critical consequences for the dissolved-phase sensitivity of in vivo 129Xe NMR. The 30° tip angle used to acquire the spectrum of figure 4.2 samples longitudinal 129Xe-blood magnetization at a
higher rate than the 13° tip angle used in the experiment of figure 4.1. As a result, 129Xe-blood magnetization leaving the pulmonary vein and pumped through the body by the left heart is reduced, as compared to the 13° spectrum of figure 4.1. Consequently, we would expect a resonance arising from 129Xe in tissue to be relatively smaller in the 30° experiment, and the blood resonance to be correspondingly larger. This analysis is consistent with the assignment of the 129Xe resonances given in table 4.1.

We conclude this section with a comment about magnetic resonance of laser-polarized 129Xe \textit{in vivo}. In general, every excitation pulse destroys some of the laser-polarized 129Xe longitudinal magnetization, which cannot be restored by allowing relaxation back to thermal equilibrium as in conventional NMR. Laser-polarized 129Xe magnetization is only replenished by the delivery of additional polarized gas to the sample or \textit{in vivo} region. This “non-renewable” polarization means that acquisition pulses must generally have small tip angles to avoid destroying all the \textit{in vivo} polarization in a single shot, and consideration is required when designing pulse sequences. The non-renewable nature of laser-polarized 129Xe polarization does provide a unique feature: 129Xe magnetization \textit{in vivo} can be locally “turned off” at will by RF pulse destruction, and a potential application of this is discussed in Chapter 5.

4.3 Dynamic Uptake of 129Xe Magnetization

This section describes the NMR measurement of the time-dependence of the various chemical shift components of 129Xe observed \textit{in vivo}. Study of the \textit{in vivo} dynamics of 129Xe magnetization is a further guide to the biological compartments from which the

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical shift (ppm)</td>
<td>209.3±0.02</td>
<td>198.35±0.02</td>
<td>191.24±0.03</td>
<td>0</td>
</tr>
<tr>
<td>Width (ppm)</td>
<td>6.33±0.08</td>
<td>7.28±0.09</td>
<td>1.9±0.1</td>
<td>2.59±0.03</td>
</tr>
<tr>
<td>Width (Hz)</td>
<td>150±1.9</td>
<td>173±2.3</td>
<td>45±2.75</td>
<td>61±1</td>
</tr>
<tr>
<td>T_2^* (ms)</td>
<td>2.1±0.03</td>
<td>1.8±0.02</td>
<td>7.1±0.4</td>
<td>5.2±0.1</td>
</tr>
<tr>
<td>Assignment</td>
<td>Blood</td>
<td>Tissue</td>
<td>Fat</td>
<td>Gas</td>
</tr>
</tbody>
</table>

Table 4.1: NMR parameters extracted from the fit to the body spectrum of figure 4.2. Assignments are discussed in the text.
chemical-shifts originate, and is essential for the development of new imaging methods that measure tissue perfusion with laser-polarized 129Xe.

In vivo uptake 129Xe magnetization begins with delivery of polarized 129Xe gas by inhalation, and is followed by transport and buildup of the 129Xe in the blood stream and perfused tissues. Lung capillary blood rapidly equilibrates with alveolar gases and as a result, arterial blood is expected to attain maximum 129Xe signal intensity rapidly. The 129Xe signal from perfused tissue is initially zero, so the time-dependent distribution patterns and buildup rates of 129Xe intensity directly reflect the local relaxation and perfusion rates, local xenon solubility, and the efficiency of magnetization exchange between different compartments (i.e., between gas/blood, blood/tissue, and tissue/fat). Similar dynamics between resonances imply fast exchange in contiguous compartments. Conversely, since differential buildup of 129Xe in intracellular compartments on the scale of seconds is unlikely, 129Xe resonances with different time evolution are likely due to 129Xe residing in different anatomical compartments, and possibly separate organs.

4.3.1 Time evolution of whole body spectra

A series of 64 cardiac-gated spectra were acquired with two phase-cycled averages each (i.e., 128 pulses total). The NMR parameters are as in the time-averaged spectrum of figure 4.2. Delivery of the Xe/O$_2$ (1:1) mixture began at approximately $t = 5$ s, and continued to $t = 30$ s during the acquisition. For each of the 64 spectra, the amplitude of each of the resonances was determined by a least-squares fit to a sum of 4 independent Lorentzians with a common baseline, with the frequency and width of each Lorentzian fixed to the values obtained given in table 4.1. The uptake and washout of the amplitudes of the observed 129Xe resonances in the rat body are shown in figure 4.3 and figure 4.4.

Analysis of the combined dynamics of 129Xe gas/blood magnetization in figure 4.3 indicates that 129Xe blood magnetization is proportional to 129Xe gas magnetization (which is dominated by gas in the lung). Xenon is known to rapidly penetrate the alveolar epithelium [115], so the two compartments rapidly equilibrate. The dynamics of end-tidal gas thus mirror those of arterial blood, suggesting exchange between the gas and blood components in the lung that is fast on the experimental time scale of the signal acquisition period of 428 ms. On the basis of its rapid buildup (i.e., with no discernible time lag with
respect to the gas signal), the most likely location of the 209 ppm 129Xe-blood peak is in the freshly-perfused lung capillary blood and the adjacent pulmonary veins and left heart.

Whereas the blood signal reaches steady-state within about 13 seconds of gas delivery, steady-state is not achieved for either the 129Xe-tissue (198 ppm) or the 129Xe-fat (191 ppm) signal (figure 4.4).

Resonances showing very dissimilar time evolution are likely due to 129Xe residing in distinct anatomical structures, as chemical exchange and diffusion make differential buildup in intracellular compartments on the time scale of seconds very unlikely. Highly-perfused, lipid-rich organs such as the brain, the kidneys, and the heart have a high capac-

Figure 4.3: Dynamics of 129Xe magnetization in vivo: the uptake and washout of 129Xe gas and 129Xe dissolved in blood (209 ppm). The gas resonance amplitude is normalized to the maximum intensity of the blood resonance for comparison. Delivery of the Xe:O$_2$ (1:1) mixture started at approximately $t = 5$ s and continued to $t = 30$ s. Note at 30 s the introduction of additional O$_2$ leads to a shorter wash-out time constant. The tip angle was 30°, TR was 428 ms, and each spectrum was obtained with two phase-cycled averages.
ity for dissolved xenon both because of their blood-tissue partition coefficients (table 4.2) and their large organ mass relative to the mass of blood perfusing them (i.e., vascularization that is a small fraction of the total organ mass). Therefore, we conclude that the slow buildup observed is due to this greater distal-organ capacity for xenon and a long intrinsic 129Xe-tissue T_1. The uptake and washout rates of 129Xe in fat are slower than the uptake and washout of 129Xe in tissue, consistent with a both a lower perfusion rate and higher xenon solubility in fat compared to typical tissue.

The uptake and washout rates observed in NMR experiments with laser-polarized 129Xe are affected by the details of the NMR sampling, and are not entirely intrinsic properties of the biological system being studied. This is discussed in more detail in Chapter 5. Nevertheless, important qualitative conclusions can nevertheless be drawn from 129Xe
dynamics *in vivo*.

In order to study the buildup of 129Xe magnetization in compartments where destruction by NMR sampling would not allow significant dissolved-phase magnetization to accumulate, three spectra obtained with 13° tip angle were studied during an experiment of 17 seconds of xenon delivery uptake. The spectra in figure 4.5 spectra were acquired four seconds after the start of xenon delivery (figure 4.5a), and three seconds (figure 4.5b) and seven seconds (figure 4.5c) after the end of xenon delivery. These spectra help to clarify the

Figure 4.5: Individual 129Xe spectra obtained from the rat body (a) 4 seconds after the start of xenon delivery, (b) 3 seconds after the end of Xe delivery, and (c) 7 seconds after the end of xenon delivery. The tip angle was 13°, and NMR parameters the same as in figure 4.1. All spectra are plotted with the same vertical scale, and were obtained with two phase-cycled averages each.
assignment of the blood and tissue resonances.

Near the beginning of xenon delivery (figure 4.5a), 129Xe resonances in gas, tissue, and blood are all present. Xenon rapidly penetrates the alveolar epithelium [115], and the lung perfusion rate is extremely high (43 mL g$^{-1}$ min$^{-1}$ [116]), and as a result a steady-state is rapidly reached between the blood resonance and gas resonance. Consequently, one would not expect to see a large 129Xe-gas resonance without a corresponding 129Xe-blood resonance. The tissue resonance at 199 ppm appears soon after the start of xenon delivery (figure 4.5a), and as a result is likely is due to 129Xe in the highly-perfused lung epithelium. The same argument can be applied to the “early” blood resonance of figure 4.5a, which must be from 129Xe in the lung capillary bed. We expect that very little 129Xe magnetization would have reached the more slowly perfused fatty tissues, and this is consistent with the conspicuous absence of a 129Xe-fat resonance (191 ppm) in the spectrum of figure 4.5a.

The spectra acquired after delivery of the xenon breathing mixture reveal information about the long-lived 129Xe tissue and fat resonances. Shortly after xenon delivery was stopped, all three dissolved-phase resonances are present in figure 4.5b, with the tissue resonance at 198 ppm greater than both the blood (209 ppm) and fat (191 ppm) resonances. At seven seconds after the end of xenon delivery (figure 4.5c), the coupled blood and gas resonances are small, and the tissue and fat resonances remain. The tissue resonance in this spectrum is likely due the more distal tissues in the body reached by blood flow. The resonance at 191 ppm, assigned to 129Xe in fat, which did not appear at the onset of xenon delivery in figure 4.5a and remains after the blood resonance has nearly disappeared in figure 4.5c, is consistent with known diffusive properties of xenon into fat (i.e., low flow rat and high solubility), and is consistent with a long 129Xe-fat T$_1$.

4.4 Spatial Localization and Imaging

This section presents localization studies of 129Xe magnetization in vivo. One- and two-dimensional images of the spatial distribution of 129Xe chemical shifts were made with a magnetic resonance method known as chemical shift imaging (CSI). Unlike the tissue distribution of the radioactive isotope 133Xe [117], 129Xe magnetization decays with a longitudinal relaxation rate that depends on its local environment. As a result, the in vivo tissue
distribution of 129Xe magnetization may differ significantly from the \textit{in vivo} concentration of xenon in tissue. 129Xe magnetization will accumulate in those organs with a high rate of perfusion and large xenon solubility coefficient (see table 4.2) provided these organs have a relatively short blood transit time from the heart and a long 129Xe T$_1$. \textit{In vivo} 129Xe longitudinal relaxation times in tissues are largely unknown, and only recently have \textit{ex vivo} studies in rat tissue homogenates been reported [26]. These measurements (made using thermally polarized 129Xe) have acquisition times of nearly 24 hours and were performed at 10 °C. As a result, these \textit{ex vivo} T$_1$ measurements are not easily applicable to the evaluation the feasibility of \textit{in vivo} 129Xe tissue imaging. The direct measurement of the \textit{in vivo} 129Xe magnetization distribution is essential in order to determine which organs are suitable for study with laser-polarized 129Xe.

4.4.1 One-dimensional CSI

One-dimensional chemical-shift images (CSI) were collected along the anterior-posterior axis of the animal in two separate experiments: one with a 13° and the other with a 30° tip angle. The field-of-view (FOV) for each experiment was 180 mm with 64 phase-encoding steps. The duration of the phase-encode gradient was 500 μs. All other parameters are the same as in figure 4.2. No slice selection gradient was used in these experiments (\textit{i.e.}, spatial information is resolved only along the anterior-posterior direction, and each spectrum is a projection along both the ventral-dorsal and right-left directions). The 1D CSI acquisition sequence began 5 seconds after the Xe/O$_2$ (1:1) mixture delivery was started and lasted one minute.

Processing of the 1D CSI experiments consisted of several steps. Each of the 64 individual FIDs was multiplied by a 20 Hz exponential apodization filter as described in section 4.2.1. The data were then multiplied by a trapezoidal function in k-space. This apodization filter is effectively a low-pass filter in k-space, with the pass cutoff frequency set to maximize SNR while minimizing the loss of high-frequency information. The k_z dimension was zero-filled from 64 to 128 data points. Zero-filling is a technique used to increase digital resolution. Digital resolution can be expressed as the spectral width in hertz divided by the number of samples. It is possible to add data points to the end of the FID where the signal has effectively decayed to noise. Generally, data points consisting of
zeros are added to double the number of samples in the FID, hence the name zero-filling. After zero-filling, the data was Fourier transformed in both dimensions. The localized 129Xe spectra obtained in each experiment are shown as a greyscale image in figure 4.6.

A set of spin-echo 1H images with a 2 mm slice thickness and a 4 mm separation between slices was acquired without repositioning the animal. These cardiac-gated 1H spin-echo images (TR = 428 ms, TE = 18 ms, FOV = 180 mm × 180 mm) was acquired for anatomical registration of the localized 129Xe spectra. Three representative slices of the 1H data set containing (1) brain, (2) kidney, and (3) heart are shown in figure 4.6 (1–3).

The spatial distribution of the 129Xe resonances in blood, tissue, and fat varies markedly between the two 129Xe CSI experiments, and these results are consistent with the hypotheses of table 4.1. Since NMR pulsing with the 30° tip angle samples and destroys 129Xe magnetization in thoracic blood at a higher rate than NMR pulsing with a 13° tip, 129Xe NMR signal is not observed in distant tissue. The 13° tip angle allows sufficient 129Xe magnetization to accumulate in thoracic blood so that detectable 129Xe magnetization accumulates in regions identified by the 1H slices to contain the brain and kidney.

In order to more carefully examine the spatial distribution of figure 4.6, the 13° data A, B, and C were spatially summed over the indicated regions, and the spectra corresponding to these regions are shown in figure 4.7 a–c. It is interesting that the resonance at 191 ppm assigned to 129Xe-fat is present only near the region containing the heart (figure 4.7 b). This further localization suggests assignment to 129Xe dissolved in epicardial fat. The

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>f_i (mL g⁻¹ min⁻¹)</th>
<th>λ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray matter</td>
<td>0.85 [115]</td>
<td>0.79ᵃ</td>
</tr>
<tr>
<td>White matter</td>
<td>0.43 [115]</td>
<td>1.32ᵃ</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.06 [116]</td>
<td>0.58 [117]</td>
</tr>
<tr>
<td>Adipose fat</td>
<td>0.04 [116]</td>
<td>9.8 [117]</td>
</tr>
<tr>
<td>Kidney</td>
<td>4.0 [116]</td>
<td>0.66 [117]</td>
</tr>
<tr>
<td>Liver</td>
<td>0.20 [116]</td>
<td>0.72 [117]</td>
</tr>
<tr>
<td>Heart</td>
<td>4.9 [116]</td>
<td>0.69 [117]</td>
</tr>
</tbody>
</table>

Table 4.2: Rat tissue perfusion rates (f_i) and xenon blood:tissue partition coefficients (λ_i).

ᵃ. From reference [90], in vitro data from dogs; at 37°C and 50% hematocrit obtained from tissue/gas and blood/gas partition coefficients.
absence of a blood resonance in region encompassing the brain (figure 4.7a) is not surprising, given the relatively small volume of blood in the brain (a few percent, by volume). The absence of a blood resonance in the region containing the kidney (figure 4.7c) is unexpected given the large volume of blood in the kidney.

These one-dimensional CSI experiments indicate that tissue-phase 129Xe magnetiza-
tion in vivo is primarily located in regions that include the brain, kidney, and thorax of rats. Absence of signal in the liver may be due to short tissue T_1 and/or the low perfusion rate ($0.19 \text{ mL g min}^{-1}$). It is important to keep in mind that the ^{129}Xe spectra obtained from the regions A, B, and C are not spatially resolved in any other than the anterior-posterior direction, and these regions contain other tissue, muscle, and bone, adipose fat, skin which could contribute to the regional ^{129}Xe signal. However, perfusion rates in these compartments are quite low—skin: $0.15 \text{ mL g}^{-1} \text{ min}^{-1}$, bone: $0.16 \text{ mL g}^{-1} \text{ min}^{-1}$, muscle: $0.06 \text{ mL g}^{-1} \text{ min}^{-1}$, and fat: $0.04 \text{ mL g}^{-1} \text{ min}^{-1}$ [116].

Figure 4.7: Localized spectra of ^{129}Xe in the rat body. Spectra of ^{129}Xe from regions encompassing (a) brain, (b) heart, and (c) kidney. The vertical scale is the same for all the spectra. Each spectrum was obtained by summing the 1D CSI data over the region indicated in figure 4.6. The tip angle in this study was 13°.
4.4.2 Two-dimensional CSI

This section presents axial and coronal images of thoracic 129Xe magnetization *in vivo*. In the previous section, we used 1D CSI experiments to detect 129Xe magnetization in the brain, kidney, and thorax of Sprague-Dawley rats after the inhalation of laser-polarized 129Xe gas. In order to study the distribution of 129Xe magnetization in the thorax, a series of 2D CSI experiments was performed. In this section, we exploit the result found in our 1D CSI studies: NMR pulsing at 30° constrains dissolved-phase 129Xe magnetization predominately to the thorax. We also describe several potential clinical applications for *in vivo* 129Xe chemical-shift imaging.

Two-dimensional chemical-shift images were collected in two separate experiments: one in the coronal plane and the other in the axial plane. Each of these experiments was performed during delivery of the Xe/O$_2$ (1:1) breathing mixture for approximately four minutes. A 30° tip angle and 428 ms TR was used in acquisition, and the NMR parameters are the same as in figure 4.2. No slice selection was used in these experiments, so that each spatially-resolved spectrum is a projection along either the anterior-posterior direction (for the axial image), or the ventral-dorsal (for the coronal image). Each dataset was acquired with 16 \times 16 phase-encode values and two phase-cycled averages per phase-encode. The duration of the phase-encode gradient was 500 μs. The axial images were created from a single dataset with a 4-minute acquisition, and the coronal images were created from the sum of two 4-minute acquisitions. The FOV was 60 mm \times 60 mm in the axial images, and 100 mm \times 100 mm in the coronal images.

The processing of the 2D CSI experiments is as follows. Each of the 256 individual FIDs in the 2D CSI dataset was multiplied with a 20 Hz exponential line-broadening function. The data were then multiplied with a trapezoidal function in both k_x and k_z (for the coronal dataset) or in k_x and k_y (for the axial dataset), and zero-filled from 16 \times 16 to 32 \times 32. After zero-filling, the data were Fourier transformed in both dimensions. For each of the 1024 spectra, a least squares fit to the model of a sum of 3 independent Lorentzians (blood, tissue, and gas) with a common baseline was obtained, and the amplitudes for each spectral component used to create chemical-shift resolved images of the 129Xe magnetization. Cardiac-gated 1H images were collected for spatial registration of the 129Xe signal.

Axial and coronal images of 129Xe gas and 129Xe dissolved in blood and tissue are pre-
Figure 4.8: 129Xe axial (A–C) and coronal (E–G) 2D CSI. Images of 129Xe in blood (A and E), tissue (B and F), and gas (C and G) are shown. Cardiac-gated 1H images (D and H) are shown for anatomical registration (water from the warming blanket is seen on the dorsal side of the axial 1H image). The FOV was 60 × 60 mm in the axial images and 100 × 100 mm in the coronal images. The tip angle was 30° for all the 129Xe images.

The images of 129Xe dissolved in blood in figure 4.8 (A and E) and figure 4.9 (A and D) are consistent with 129Xe magnetization present in the lung capillary bed, the pulmonary vein, and the left ventricle of the heart, and these images of 129Xe in pulmonary blood represent the first use of laser-polarized 129Xe to image transport of xenon gas across the lung epithelium and into the blood. The distribution of 129Xe-blood magnetization in this region is best understood in terms of rodent circulation and 129Xe gas/blood exchange at the lung.

The largest volume of blood in the thorax is pulmonary blood, which is roughly 7% of the total blood volume in the rat [118]. Venous blood returning to the heart is largely depolarized because the circulation time through the body is long (approximately 20 s) compared to the 129Xe-blood T_1 (approximately 6 s). This blood is pumped from the right heart via the pulmonary artery to the lung epithelium, and saturated with polarized 129Xe.
This freshly-perfused blood returns to the left heart via the pulmonary vein, where it is then pumped to the body’s main arteries. Thus, we expect that only the venous side of the pulmonary blood to contribute to the thoracic ^{129}Xe-blood signal. The large ^{129}Xe-blood signal observed throughout the lungs indicates efficient transport of magnetization from gas in the lungs in this pulmonary blood. Likewise, the signal from ^{129}Xe-blood in the heart is likewise assumed to arise from the largest volume of freshly-perfused blood in the heart i.e., the left ventricular blood volume, 0.1 mL/100 g BW [118].

The images of ^{129}Xe dissolved in tissue in the thorax shown in figure 4.8 (B and F) and figure 4.9 (B and E) are consistent with ^{129}Xe dissolved in lung epithelium. This is corrob-
orated by our time-resolved spectroscopy studies that show 129Xe passing through a tissue phase in the lungs before reaching the pulmonary blood (figure 4.5a). 129Xe magnetization in tissue is also observed in the region of the heart, and suggests 129Xe is present in myocardial tissue.

Clinical applications exist for 129Xe-tissue images obtained from the thorax. Restricted blood flow and unperfused regions would be revealed by the absence of a 129Xe-tissue signal in that region, and the presence of detectable 129Xe magnetization in the myocardium may be used to measure cardiac perfusion, in a manner in similar to the use of 133Xe nuclear medicine [21]. Since chronic cardiac dysfunction is often associated with alterations of coronary microcirculation [119, 120], a quantitative and noninvasive measurement of regional myocardial perfusion might provide the specificity necessary to assess of cardiac dysfunction.

The images of 129Xe gas in figure 4.8 (C and G) and figure 4.9 (C and F) show 129Xe present in the air spaces of the lung and trachea. Although images constructed from 129Xe CSI data currently have lower spatial resolution than the high-resolution magnetic resonance images of laser-polarized 3He gas [121, 122], spatial resolution is often secondary to the need to assess pulmonary perfusion and ventilation in pulmonary medicine. The efficiency of gas/blood exchange in alveoli is determined both by local ventilation and by regional perfusion, and an image that could indicate gas-exchange can be considered to be maps of lung function. This type of imaging would be sensitive to regions of lung with abnormal ventilation but normal perfusion (as is the case in airway diseases such as chronic obstructive pulmonary diseases), as well as regions of lung with normal ventilation but poor perfusion, such as in the case of pulmonary embolism. CSI with laser-polarized 129Xe has the potential to be used to assess lung function through comparison of the distribution of lung gas with the distribution of 129Xe dissolved in blood and tissue, and to replace standard ventilation-perfusion techniques [123] with a single MRI study.

We now examine several individual 129Xe spectra from the coronal 2D CSI dataset. These spectra from the CSI dataset corresponding to their indicated regions on the 16×16 grid overlaid on the coronal 1H image of figure 4.10. Each of the five spectra (a–e) corresponds to the 129Xe magnetization in the indicated 2D pixel of the proton image, projected in the ventral-dorsal direction over the thickness of the animal. These five spectra
(a–e) are shown in figure 4.11.

The spectrum shown in figure 4.11c comes from a voxel nearly centered on the left ventricle and likely containing the pulmonary vein. Consequently, the spectra from this voxel is dominated by a single resonance at 209 ppm (i.e., 129Xe dissolved in blood), consistent with the large volume of freshly perfused blood in this region. The absence of a large 129Xe-gas resonance in this voxel (c.f. figure 4.11 d and e) implies a small volume of the lung is contained in the voxel, even though this spectrum is a projection through the animal. A 129Xe-tissue resonance is markedly absent from figure 4.11c, which is surprising as we would expect to see 129Xe-tissue magnetization in the cardiac wall. There is an unusual broadening of the 129Xe-blood resonance in the region of the 129Xe-tissue resonance, and this may be due to exchange dynamics between rapidly flowing blood and the heart muscle.

As expected, spectra from voxels including significant lung volume (e.g., figure 4.11 d and e) indicate 129Xe magnetization in gas, blood, and tissue of the lungs. The ability to spatially resolve 129Xe resonances in lung gas, and in lung tissue and pulmonary blood in the lungs may provide regional measure of lung function with higher specificity than

Figure 4.10: Regions from the coronal 2D CSI used to generate figure 4.11.
The region from which each spectrum was taken is indicated in figure 4.10. The single resonance observed in blood in the heart at 209 ppm (c) is consistent with fast exchange of 129Xe between red blood cells and plasma. The vertical scale for spectrum e is twice that of spectra a–d.

tomographic nuclear medicine techniques.

4.5 In Vivo 129Xe Resonance Assignments

Throughout this chapter, we have demonstrated measurement of the tip-angle dependence
of \textit{in vivo} 129Xe spectroscopy, the dynamics of 129Xe magnetization \textit{in vivo}, and the spatial distribution of 129Xe magnetization in the rat body that are all consistent with our assignment of the major 129Xe spectral components observed in the rat at 2 T. This section gives additional analysis supporting our assignments of 129Xe dissolved in blood (209 ppm), tissue (198 ppm), and fat (191 ppm).

4.5.1 129Xe blood resonance (209 ppm)

There is a discrepancy between our observation of a single 129Xe-blood resonance in rats \textit{in vivo}, and \textit{in vitro} studies performed by other investigators in human blood. \textit{In vitro} work has shown 129Xe dissolved in whole human blood to have two well resolved resonances, assigned to 129Xe in red blood cells and 129Xe in plasma [112, 113]. These studies find that the position of the RBC resonance in human blood depends strongly on the blood oxygenation level, ranging from 216–222 ppm, but the plasma resonance is relatively independent of blood oxygenation level [112, 113]. However, two different values of the 129Xe-plasma resonance in human blood have been reported: 197 ppm [112, 113] and 192 ppm [24].

The 129Xe-RBC and 129Xe-plasma resonances in human blood are known to be coupled by chemical exchange with a measured exchange time of 12 ms at 4.3 T and ambient laboratory temperature [24], and the NMR lineshape of chemically exchanging systems depends strongly on the time scale of the exchange process, τ. This effect is well known in NMR spectroscopy when a species is in exchange between two states with their associated spectral resonances separated by angular frequency $\delta\omega$.

When the time scale for exchange between nuclear moments is slow compared to the NMR time scale (determined by the non-exchanging peak separation $\delta\omega$), two resonances are observed. In the chemical exchange measurements in human blood [24], the NMR time scale of 130 μs (i.e., 24 ppm at 4.3 T) is almost than two orders of magnitude shorter than the 12 ms xenon exchange time between blood components reported by Bifone \textit{et al.} [24]. In this slow exchange regime, 129Xe dissolved in human blood is expected to always have two resonances.

The results presented in this thesis find no evidence for two blood resonances in Sprague-Dawley rats \textit{in vivo}. The spectrum of 129Xe localized to a voxel apparently containing
predominately blood (figure 4.11c) shows a single resonance at 209 ppm. In fact, no resonance in the 216–222 range is observed anywhere in the rat body in vivo. We hypothesize several factors that may contribute to our observation of only one resonance in rat blood in vivo.

Fast exchange occurs when the exchange time τ obeys the condition $\tau \delta \omega \ll 1$, (i.e., the spin diffusion time is short compared to the transverse spin relaxation time). When chemical exchange is fast compared to the NMR time scale, the individual resonances become completely averaged and a single resonance is observed [124-126]. The RBC-plasma exchange process where exchange was decoupled and measured to be “slow” at 23 °C and 9.4 T may move into the fast-exchange regime under the conditions of our in vivo studies: 37 °C and 2 T.

If we assume that the observed in vivo rat blood resonance of figure 4.11c is the result of fast-exchanging plasma and RBC resonances, the frequency of the observed blood resonance can be calculated [87, 124-126],

$$v_{\text{blood}} = p_{\text{rbc}}v_{rbc} + p_{\text{plasma}}v_{\text{plasma}},$$

(4.2)

where p_{rbc} and p_{plasma} are the mole fractions of 129Xe in red blood cells and plasma, respectively, and v_{rbc} and v_{plasma} are the pre-exchange frequencies. The coefficients p_{rbc} and p_{plasma} can be estimated from the xenon RBC:plasma partition coefficient, λ_{cp} and the hematocrit, H. The concentration of xenon in whole blood (C_b) in terms of the concentration of xenon in red blood cells (C_{rbc}) and xenon in plasma (C_{plasma}) is

$$C_b = HC_{rbc} + (1 - H)C_{\text{plasma}},$$

(4.3)

where H is the hematocrit (i.e. the RBC fraction of whole blood). The RBC:plasma partition coefficient, λ_{cp} is defined as

$$\lambda_{cp} = C_{rbc} / C_{\text{plasma}}.$$

(4.4)

Combining equation 4.3 and equation 4.4, the mole fractions can be written
The 129Xe blood resonance frequency under fast exchange conditions can be calculated with equation 4.2 and equation 4.5. Using the values obtained in human blood at 9.4 T and ambient temperature ($\nu_{rbc} = 216$ ppm, $\nu_{plasma} = 192$ ppm) [24], the Sprague-Dawley hematocrit of 0.43 [127], and the RBC-plasma partition coefficient (obtained in dog blood) $\lambda_{cp} = 3.31$ [90], the calculated ν_{blood} is 209 ppm, the same as chemical shift we measure in vivo.

This analysis shows that our in vivo observations are consistent with 129Xe in fast exchange between RBC and plasma components. A variety of factors could contribute to the observation of fast-exchange at in rats in vivo at 2 T. The efficiency of exchange is strongly temperature dependent, and all in vivo experiments were performed at 37 °C. Also, the mean rat RBC diameter is approximately 6 μm [128], smaller than the human RBC diameter of 8 μm [129], potentially allowing for more efficient mixing of intra/extra cellular components (and shortening of the 129Xe-RBC/129Xe-plasma exchange time). Although this argument is compelling, a systematic study of the xenon in blood of different species and under different experimental conditions has yet to be performed.

Other studies performed in rats at 4.7 T by Sakai et al. [130] assign nonlocalized in vivo 129Xe chemical shifts of 129Xe-RBC and 129Xe-plasma to 213 and 192 ppm, respectively. A resonance at 209 ppm is present in figure 4.5a near the beginning of 129Xe delivery. This resonance could be assigned to “129Xe-RBC”, however the corresponding “plasma” resonance at 192 ppm is not observed. Additionally, a resonance at 191 ppm is present in figure 4.5c, but no “RBC” resonance is observed at 209 ppm. The data presented in this thesis requires a different assignment of the resonances, with the assignment of the resonance at 191 ppm described in section 4.5.3.

4.5.2 129Xe tissue resonance (198 ppm)

The 129Xe resonance at 198 ppm first appears in the lung alveolar region promptly after 129Xe magnetization is introduced into the lungs (figure 4.5a). This 198 ppm signal increases with time and becomes larger than the blood signal as 129Xe perfuses into more distant organs such as brain and kidney (figure 4.1 and figure 4.5b). One-dimensional CSI
data acquired with a small tip-angle pulse show 129Xe magnetization at 198 ppm present in the thorax, kidneys, and the brain (figure 4.6). Two-dimensional CSI data shows 129Xe magnetization at this frequency in the thorax, in the lungs, and in the heart (figure 4.8B and figure 4.9B). We thus conclude that the 129Xe resonance observed at 198 ppm is consistent with 129Xe magnetization dissolved in tissue.

4.5.3 129Xe fat resonance (191 ppm)

The resonance observed at 191 ppm is assigned to 129Xe in epicardial fat based on chemical shift, dynamics, and localization in the rat body, as discussed above. The chemical shift of this resonance is similar to the chemical shift of xenon dissolved in other fatty tissues, such as beef fat [130] and long-chain fatty acids [94]. Autoradiographic studies [131] of 133Xe uptake find 133Xe activity is located primarily in myocardium during the first minutes of uptake, and afterwards in epicardial fat. This epicardial fat, with its low blood flow and high partition coefficient, leads to a very slow observed washout. In fact, xenon radioactivity has been shown by autoradiography to be present in epicardial fat in significant concentration for at least eight minutes after intracoronary injection of 133Xe [131]. The inability of nuclear medicine techniques to separate fat and tissue compartments has hampered the use of 133Xe washout as a method to measure myocardial blood flow, as the high solubility in cardiac fat limits the number of measurements obtainable in each study [21, 132, 133]. We have shown that 129Xe magnetization in epicardial fat and in myocardial tissue are easily separable with NMR spectroscopy, and given increases in 129Xe-fat SNR, images of each component may be made.

4.5.4 Summary

The results presented here show that 129Xe magnetization is present in lungs, blood, brain, kidney, myocardium, and epicardial fat after inhalation of laser polarized 129Xe. 129Xe resonances are observed in vivo at 209, 198, and 191 ppm and are consistent with 129Xe magnetization dissolved in blood, tissue, and epicardial fat, respectively. 129Xe magnetization flows from gas in lungs, to lung epithelium, into the blood, through the heart, and finally into organ tissue (heart, brain, kidney). In the heart ventricle, a single blood resonance is observed, indicating that the red blood cell and plasma components are in fast exchange in
vivo at 37 °C and 2 T in rat blood. Many types of function-weighted images can be constructed with CSI data in vivo. This technique may provide significant diagnostic information. In Chapter 5, a 129Xe NMR method for the quantitative measurement of perfusion based on tip-angle-dependent measurement of 129Xe-tissue resonances is presented.

4.6 Brain 129Xe NMR and MRI

This section presents localized 129Xe spectroscopy and imaging studies constrained to the head of Sprague-Dawley rats. The feasibility of brain MRI with laser-polarized 129Xe in a small animal model is demonstrated with NMR spectroscopy and imaging of the rat brain in vivo. We present spectroscopic studies that reveal a complex 129Xe dissolved-phase spectrum in the rat head, and we hypothesize the origin of two of the five observed dissolved-phase resonances in vivo. Although these studies are among the earliest we performed, these results demonstrate some of the necessary experimental features essential for the use of laser-polarized 129Xe as magnetic resonance tracer for studies of cerebral perfusion.

4.6.1 Brain spectroscopy and uptake

The potential for magnetic resonance studies with dissolved-phase 129Xe was explored through in vivo 129Xe spectroscopy experiments using the NMR “surface” probe described in detail in section 3.7.1. This three-turn, doubly-tuned 1H-129Xe surface coil with a 3.5 cm diameter was constructed and used for all of the following experiments. The detected 129Xe signal in these experiments comes from the distribution of 129Xe magnetization constrained to the sensitive region of the RF coil, which falls off rapidly outside of the region of the rat head.

Spectroscopy was performed using with an estimated 20° tip angle pulse (averaged over region of interest of the brain). The spectrometer spectral width was set to 2 kHz, centered about the tissue-dissolved 129Xe spectral regions, since no 129Xe gas resonance was detected in broadband experiments. FID signals consisting of 1024 points were acquired with repetition time $TR = 0.5$ s. Each FID in the final dataset is the sum of two phase-cycled acquisitions.

Two datasets consisting of 256 pulses each were obtained from a single animal over
two runs of 50 seconds of Xe/O₂ (60%/40%) inhalation with a ¹²⁹Xe polarization of approximately 4.5%. After acquisition, the time-domain data was multiplied by a 20 Hz exponential line-broadening function, and then Fourier transformed. Each set of 128 spectra were summed over time, and the two datasets averaged together. The *in vivo* NMR spectrum of laser-polarized ¹²⁹Xe in the rat head obtained from this procedure is shown in figure 4.12.

Figure 4.12: Spectrum of ¹²⁹Xe in the rat head at 2 T, acquired from 256 acquisitions over two runs of 50 seconds each. The solid curve is the result of a least-squares fit to a sum of five independent Lorentzians with a common baseline. Assignment of the resonances at 209 and 195 ppm to ¹²⁹Xe in blood and grey matter, respectively, is discussed in section 4.6.3.
As in section 4.2.1, the frequency and linewidth of each resonance in figure 4.12 was determined by a least-squares fit to five independent Lorentzians with a common baseline. The parameters obtained from this spectrum and hypothetical resonance assignments are given in table 4.3.

<table>
<thead>
<tr>
<th>Chemical shift (ppm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width (ppm)</td>
<td>208.5±0.1</td>
<td>197.97±0.03</td>
<td>194.94±0.01</td>
<td>191.87±0.04</td>
<td>189±0.04</td>
</tr>
<tr>
<td>Width (Hz)</td>
<td>6.7±0.6</td>
<td>2.4±0.1</td>
<td>1.31±0.02</td>
<td>1.4±0.1</td>
<td>1.2±0.1</td>
</tr>
<tr>
<td>T_2^* (ms)</td>
<td>161±14</td>
<td>57±3</td>
<td>31±0.5</td>
<td>33±3</td>
<td>28±3</td>
</tr>
<tr>
<td>Assignment</td>
<td>Blood</td>
<td>?</td>
<td>Grey matter</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Table 4.3: NMR parameters extracted from the fit to the brain spectrum of figure 4.12. Assignments are discussed in the text.

The time dependence of the dominant 129Xe resonance seen in figure 4.12 (195 ppm) is plotted in figure 4.13 for each of the two datasets. The decrease in the amplitude of the 195 ppm resonance prior to the discontinuance of the Xe/O$_2$ mixture is likely due to many factors including the anesthetic effect of the xenon itself. Inhalation of 60% xenon is considered an anesthetic dose in humans [134], and cerebral perfusion is known to be reduced in anesthetic states. We have subsequently learned that animals should receive no more than 35% xenon to avoid significant alterations of blood flow by xenon inhalation. Additionally, the blood oxygen saturation of the rat measured by the pulse oximeter decreased substantially during the course of this experiment, beginning at typically 95% and dropping to as low as 45% before the breathing mixture was halted at $t = 50$ s. The changing oxygenation in the blood will decrease the 129Xe-blood T_1 [112], and consequently reduce the 129Xe magnetization reaching the brain. These issues are discussed in more detail in Chapter 5.

4.6.2 Brain imaging
Images of 129Xe magnetization in the rat head were acquired using a 2D CSI pulse sequence. At the time that these imaging experiments were performed, the polarized 129Xe
The accumulation stage had not been incorporated into the polarizer apparatus and only single batches of polarized gas could be produced. In order to maximize the attainable SNR of the very limited amount of gas available in these early exploratory experiments, 100% xenon was delivered to the animal, at approximately 3.5% polarization.

A two-dimensional 129Xe CSI image with a 50 mm \times 50 mm FOV was collected in the horizontal plane in a single experiment of 40 s xenon delivery. The CSI sequence was started about 5 seconds prior to delivery of the 129Xe gas, and continued for a total imaging duration of 73 s. A 1 ms single-cycle Sinc pulse with an average 20° tip angle (averaged

Figure 4.13: Uptake of 195 ppm “grey matter” peak, in two consecutive runs. In both runs, the delivery of polarized xenon was stopped at $t = 50$ s. The decrease of 129Xe signal during the delivery is likely to have contributions from the changing blood oxygenation level in both the lung and the blood during the experiment, as well as from changes in CBF due to the large inhaled xenon fraction (60%) [115].

accumulation stage had not been incorporated into the polarizer apparatus and only single batches of polarized gas could be produced. In order to maximize the attainable SNR of the very limited amount of gas available in these early exploratory experiments, 100% xenon was delivered to the animal, at approximately 3.5% polarization.

A two-dimensional 129Xe CSI image with a 50 mm \times 50 mm FOV was collected in the horizontal plane in a single experiment of 40 s xenon delivery. The CSI sequence was started about 5 seconds prior to delivery of the 129Xe gas, and continued for a total imaging duration of 73 s. A 1 ms single-cycle Sinc pulse with an average 20° tip angle (averaged
over the brain region) was used in acquisition. The dataset was acquired with 16×16 phase-encode values and two phase-cycled averages per phase-encoding step. For each phase-encode, FIDs were obtained (256 points) in 128 ms. The duration of the phase-encode gradient was 500 μs. The slice thickness was 10 mm. The frequency of the spectrometer was set to the 195 ppm dissolved-phase resonance, determined prior to the in vivo experiment by observing the 129Xe gas resonance in a glass phantom, and the receiver bandwidth was 2 kHz.

The $256 \times 16 \times 16$ CSI data set was zero-filled along both phase-encode dimensions to produce a final dataset of $256 \times 32 \times 32$. The data were then Fourier transformed along each dimension. A Lorentzian was fit to the resonance at 195 ppm in each of the 1024 spectra, and the amplitude of the fit was used to generate the 129Xe image. It should be noted that the individual spectra in the CSI data set had only one resolvable peak (195 ppm), compared to the 5 dissolved peaks of figure 4.12. This is ostensibly due to the low polarization and short running time of the CSI experiment, and potentially to the reduction of signal that accompanies the use of 100% xenon.

A proton image was acquired with a conventional spin-echo pulse sequence with a slice thickness of 10 mm, a field of view of 50 mm \times 50 mm, 500 ms TR, 20 ms TE, and 40 kHz receiver bandwidth.

The horizontal 129Xe CSI image of 129Xe in the brain is shown as a greyscale image in figure 4.14A alongside the 1H image (figure 4.14B) and in a false-color image overlaid on the 1H image in figure 4.14C.

The image of 129Xe magnetization in the rat brain is not homogeneous, and in particular the 129Xe signal in the cerebellum is less than the signal in the cerebrum. This signal difference may be due to lower blood flow in the cerebellum than in the cerebrum, as normal rodent cerebellar blood flow is somewhat lower than that of cerebral gray matter [135]. Additionally, the inhalation of 80% xenon for one minute is known to produce significant increases in rCBF (regional cerebral blood flow) in cerebral neocortex (a factor of nearly two) in rats, and smaller increases in most other gray and white matter forebrain structures [115]. In contrast, hindbrain cerebellum structures show very little change in rCBF as a function of xenon concentration [115].
4.6.3 Brain 129Xe resonance assignment

To date, two groups have demonstrated in vivo 129Xe spectroscopy in brain tissue: rodent results obtained at Michigan [25] and human results from the University of Virginia [136, 137]. In both of these studies, multiple dissolved-phase 129Xe resonances are observed, with a prominent peak at 195 ppm. Although our results in the spectrum of figure 4.12 indicate five dissolved-phase 129Xe NMR resonances, our imaging work had signal-to-noise sufficient to resolve only a single resonance at 195 ppm.

Assignment of the complex 129Xe spectra seen in the brain is difficult. First, the dominant 129Xe resonance at 195 ppm is assigned to 129Xe dissolved in grey matter based on several factors. The cerebral blood volume in the rat is relatively low, roughly 5% [138]. Since xenon is lipophilic, with blood/brain partition coefficient close to unity [90], and since xenon freely diffuses into brain issue, the 129Xe NMR signal observed is expected to be dominated by 129Xe in brain tissue, not by 129Xe in brain blood. Additionally, cerebral blood flow is very high (~1 mL g$^{-1}$ min$^{-1}$) compared to the surrounding fat and muscle of the head, and this is supported by the image of 129Xe in the rat head (figure 4.14), where
the 129Xe signal is localized to the brain and is not seen in the surrounding fat or muscle. The circulation through the gray matter, with its densely packed cells, is greater than through the white matter, and so we conclude that 129Xe magnetization would be expected to accumulate there more rapidly than in white matter. This leads us to assign the 195 ppm peak to gray matter.

The broad resonance at 209 ppm is assigned to 129Xe in brain blood strictly on the basis of studies in the body indicating blood at the same spectral location. We cannot confidently carry our peak assignments further, since we have not yet accurately localized the spectral components. However, it should be noted that the richness of the brain spectra clearly implies that chemical exchange between the molecular environments of the different compartments is slow on the NMR time scale corresponding to 3-4 ppm intrinsic separation (70–90 Hz, 1.8–2.3 ms). These currently unassigned resonance may arise from different tissues and fluids in the brain (e.g. white matter, CSF, adipose tissue) and present new imaging opportunities. The \textit{in vivo} chemical shift may also depend on the local blood oxygenation level [113].

Given the increases in 129Xe polarization described in Chapter 6, and the increased imaging times that will follow from with lower xenon concentration, it is likely that images of these dissolved-phase 129Xe resonances could be made and the grey and white matter resonances identifiable on the basis of their flow characteristics.

4.7 Prospects

This chapter concludes with a brief discussion of our attempts to improve the resolution of 129Xe MRI using imaging sequences other than CSI, and present some preliminary results obtained from the thorax using projection reconstruction imaging.

Perhaps the most commonly used high-resolution MRI sequences are the class of sequences know as gradient-echo sequences (see Appendix A). These imaging sequences sample k-space one line (or more) at a time, allowing images to be acquired rapidly. We have been able to obtain gradient-echo images of 129Xe gas in glass phantoms with both the volume and the surface probe, and with modest shimming we have been able to obtain upwards of 32 echoes per RF pulse. However, we have not been able to obtain an \textit{in vivo}
\(^{129}\)Xe gradient-echo image in either the brain or the thorax.

We have estimated the typical \(^{129}\)Xe *in vivo* \(T_2^*\) from the FWHM of the *in vivo* resonances to range from 2–20 ms (table 4.1 and table 4.3). These relatively short \(^{129}\)Xe transverse relaxation times \((T_2^*)\) require correspondingly shorter echo times in order that sufficient transverse \(^{129}\)Xe magnetization exist to form a detectable echo. We have tried echo times on the order of 500 \(\mu\)s, we have not been able to observe *in vivo* \(^{129}\)Xe echoes. This clearly requires further study.

An alternative imaging method we have successfully implemented *in vivo* is the method of projection reconstruction (PR) imaging (see Appendix A). PR is similar to CSI in that the recorded signal is the FID, and not a gradient-echo. Unlike CSI, however, PR samples \(k\)-space an entire line at a time, at the cost of lost spectroscopic information. Although our experience with *in vivo* PR imaging is limited, the comparison between CSI and PR is marked. Two coronal images acquired in the same animal and with the same field of view are shown in figure 4.15. The CSI image (figure 4.15A) is the gas image shown previously in figure 4.8G, and was obtained over two four-minute experiments. The PR image (figure 4.15B) was obtained in a single 48 s experiment. The polarization in both experiments is identical. It should be noted that, although at the cost of spectral information, the PR image was acquired an order of magnitude more rapidly.

Projection reconstruction images may be able to be used in combination with frequency-selective RF pulses in order to obtain images of each \(^{129}\)Xe chemical shift are to be made [139]. This may become problematic if the pulse duration of a narrow-band excitation pulse approaches the resonance \(T_2^*\). Again, this requires careful consideration.

All of the imaging sequences will see tremendous gains from increases in polarization,. and we will show in Chapter 6 that likely improvements to the system will result in 2D CSI images with resolution comparable to \(^1\)H imaging (i.e., 10 \(\mu\)L voxels). These high-resolution CSI images will enable studies to be made of suitable organs such as the heart, kidney and brain, and measurement of the combined gas/tissue images in the lungs will facilitate. Although we have not focused on \(^{129}\)Xe lung imaging extensively in this thesis, the \(^{129}\)Xe-gas images of the CSI dataset of figure 4.8 add figure 4.9 clearly points to the complementary nature of \(^1\)H and \(^{129}\)Xe imaging, as dark air spaces in \(^1\)H images are regions of \(^{129}\)Xe-gas signal intensity. It may be of substantial clinical significance to extend the nuclear
medicine ventilation/perfusion (V/Q) scan which is the current standard for functional lung imaging [140] to laser-polarized 129Xe CSI. Given the large chemical shift separation for 129Xe-gas and 129Xe-tissue, we have demonstrated how one can easily acquire gas ventilation and tissue perfusion images in rats with a single procedure. With the anticipated increases in SNR outlined in Chapter 6 and corresponding improved spatial and temporal resolution, the extension to larger animals and humans should be actively pursued.

Figure 4.15: Coronal gas imaging: (A) CSI and (B) projection reconstruction (PR) 129Xe gas imaging. FOV is 100 mm \times 100 mm in both. CSI: zero-filled from 16 \times 16 to 32 \times 32, 8 minutes acquisition (i.e., the sum of two 4-minute acquisitions.) PR: 64 views, 48 s total acquisition. Both images acquired with a 200 μs RF pulse width, 100 ms pre-delay, P_2 gated.
This chapter presents a framework whereby laser polarized 129Xe NMR can directly measure tissue perfusion in vivo. In general, the time-dependent 129Xe tissue NMR signal depends on the tissue perfusion rate (f_{BT}), the local 129Xe longitudinal relaxation time (T_1), and the NMR sampling parameters. We present a model of the in vivo transport of laser polarized 129Xe to tissue under realistic experimental NMR conditions, and demonstrate how control of the NMR parameters allow f_{BT} and T_1 to be independently extracted from the steady-state 129Xe-tissue signal. In vivo rodent 129Xe NMR results are then used to estimate the signal-to-noise ratio (SNR) attainable with this technique. We estimate that an inhaled 30% xenon/70% O$_2$ mixture polarized to 5% provides sufficient SNR in rodent grey matter to make this new 129Xe magnetic tracer method a practical quantitative technique for measurement of perfusion and 129Xe tissue T_1, enabling tomographic T_1 and perfusion maps. The laser-polarized 129Xe magnetic resonance tracer method may also be applicable to the measurement of rCBF and functional neuronal activation.

The present chapter begins with a review of the kinetics of freely diffusible indicators, common to all tracer techniques for quantitative perfusion measurement. The features and limitations of current methods are then discussed. The 129Xe magnetic resonance tracer theory and method are then presented, with the goal of quantitative non-invasive method for measurement of blood flow.
5.1 Diffusible Tracer Kinetics

In the body, blood passes from artery to vein through a capillary bed which provides the surface through which substances diffuse into tissue. Perfusion of tissue by blood provides cells the materials required for their function (e.g., O₂ and nutrients). The availability of any substance to a tissue depends on the blood flow to the tissue. Measurement of the rate of blood flow into tissue \((i.e., \text{perfusion}) \) yields information about organ viability and function; this is extremely important in both biomedical research and clinical studies.

The first non-invasive technique for the quantitative measurement of tissue perfusion was outlined by Kety in 1951 [17], and is based on the study of the exchange of biologically inert diffusible tracers\(^1\) between blood and tissue. When an inert gas tracer is introduced by respiration, blood flow carries it to the tissues of the body. The time rate of concentration of tracer within the tissue follows from the conservation of mass at the capillary level, known in circulatory physiology as the Fick principle [147]: the amount of diffusible tracer taken up by the tissue per unit time is equal to the quantity brought to the tissue by arterial blood minus the quantity carried away. If we assume tracer leaves perfused tissue only by venous outflow then,

\[
\frac{dQ_i}{dt} = V \frac{dC_i}{dt} = F_i (C_a - C_v), \tag{5.1}
\]

where \(Q_i \) is the mass of tracer in the tissue \(i \), \(V \) is the volume of perfused tissue, \(C_i \) is the tracer concentration in tissue \(i \) \((\text{typically} \ g/\text{mL}) \), \(F_i \) is the blood flow to the tissue \((\text{typically} \ mL/\text{min}) \), and \(C_a \) and \(C_v \) are the local tracer concentration in arterial and venous blood \((g/\text{mL}) \). It is common to divide through by the volume of the perfused tissue and rewrite equation 5.1 as

\[
\frac{dC_i}{dt} = f_i (C_a - C_v), \tag{5.2}
\]

where \(f_i \) is the blood flow per unit volume of tissue \((\text{typically given as} \ mL \ mL^{-1} \ min^{-1}) \).

\(^1\)Biologically inert diffusible tracers, \(i.e., \) substances which are not metabolized by or produced in the tissue under study, include \(^{131}\text{I}-\text{trifluoromethane} [141], \(^{14}\text{C}-\text{alcohols} [142], \(^{14}\text{C}-\text{antipyrine} [143], \(^{14}\text{C}-\text{iodoantipyrine} [135], \) and the gases \(\text{Xe} [144], \text{Kr} [145], \) and \(\text{H}_2 [146]. \)
If we assume free diffusion of the tracer across the capillary, and the equilibration of tracer partial pressure between tissue and venous blood, then the tissue and blood concentrations of tracer are related by the partition coefficient λ_i,

$$C_v = \frac{C_i}{\lambda_i}.$$ \hspace{1cm} (5.3)

The essential result of the Kety tracer method is obtained by combining equation 5.2 and equation 5.3:

$$\frac{dC_i}{dt} = f_i \left(C_a - \frac{C_i}{\lambda_i} \right).$$ \hspace{1cm} (5.4)

The blood flow to a given homogeneous region of perfused tissue (e.g., the brain) can be calculated from equation 5.4 if both λ and the time dependence of the tissue concentration of tracer, $C_i(t)$, are known. It should be noted that blood flow is often expressed in the literature per unit mass of tissue (including its blood), i.e., mL g$^{-1}$ min$^{-1}$.

The validity of all tracer methods derived from Kety’s formulation depend upon the assumption inherent in equation 5.3: instantaneous tissue/venous blood tracer equilibrium at the level of the single capillary. It is assumed that equilibration of tracer in tissue with arterial blood is limited only by perfusion, not by the diffusion of tracer through the capillary walls and extravascular tissues. There is considerable evidence that inert gases such as xenon are sufficiently diffusible between blood and tissue to satisfy this requirement [17, 141, 148], and therefore the assumption of instantaneous diffusion equilibrium is a valid one. For many other tracer substances, however, this is not true (e.g., 14C-antipyrine) [142, 148].

The assumption of instantaneous diffusion implies that the concentration of tracer in venous blood is continuously in equilibrium with the tissue which it drains. This is possible only if the tissue is homogeneous with respect to blood flow and tracer solubility [149]. This requirement for homogeneous tissue perfusion in the brain is approached in the limit that the regions of interest are the small, anatomically discrete structures of the brain—the ultimate goal of our method is to measure and image blood flow at this distance scale. Additionally, the presence of arteriovenous shunts would tend to limit the equilibration of
the tissue with the blood perfusing it. However anatomical studies find that no such shunts exist in the brain [150, 151].

5.2 Tracer Methods

The autoradiographic method of rCBF measurement was the first tomographic application of the principles of inert gas exchange between blood and tissue. Autoradiography was developed by Landau et al. [152], and Freygang and Sokoloff [141], using the inert gas 131I-labeled trifluoroiodomethane, CF$_3^{131}$I, as a flow tracer. Following the administration of the tracer gas, the animal was decapitated, and the head was immediately frozen in LN$_2$. The frozen head was sawed into 5 mm thick slices, and the sections placed on x-ray film to produce images of the postmortem tissue density of radiotracer. Autoradiographs accurately represent anatomical structures, and given a tracer with a known tissue/blood partition coefficient, are simple to analyze. Freygang and Sokoloff observed varying degrees of rCBF alteration in response to hypo- and hypercapnia [141]. They also observed local increases in blood flow correlating with visual stimulation, concluding that the autoradiographical method for measuring rCBF was capable of responding to functional activation. There is one significant disadvantage to the autoradiography method: each measurement requires animal sacrifice and hence this method is not suited to multiple studies in the same animal, nor can it be applied to humans.

The tremendous advances in cerebrovascular physiology and metabolism that came from the autoradiographic method motivated the further development of less invasive tracer techniques. Radiotracer techniques such as positron emission tomography (PET) with 18F and 15O–H$_2$O and single photon emission tomography (SPECT) with 133Xe [19], permit “in vivo autoradiographs” to be made and analyzed using simple extensions to the Kety model [153-155]. Additionally, transmission computed tomography (CT) techniques using nonradioactive xenon gas [23] analyze the dynamics of the radiographic enhancement produced by the inhaled high-Z Xe nucleus with sequential CT. These nuclear medicine techniques are limited for several reasons, including radioactive tracer dose limitations, tracer recirculation, and low signal-to-noise. Additionally, PET techniques have an inherent spatial resolution of 2–4 mm due to the finite lifetimes of
positrons in tissue [156] and require a complementary imaging technique such as MRI or CT for accurate anatomical mapping of the PET functional information.

Magnetic resonance imaging provides an anatomical specificity unmatched by other non-invasive imaging methods. The ability to map perfusion with MRI would allow non-invasive, high-resolution evaluation of both tissue viability and function. MRI based perfusion imaging methods are not subject to the intrinsic limitations of radiotracer or X-ray techniques and can provide functional information and anatomical registration with a single modality and apparatus. Two distinct MRI tracer techniques have been developed to measure perfusion: arterial spin labeling (ASL) of endogenous water, and injected exogenous MR contrast.

In the ASL method, moving spins in flowing blood (typically water proton nuclear spins flowing to the brain in the arterial blood) are continuously polarization-saturated in the neck with localized RF [157-159]. This perturbs their longitudinal magnetization, thus “labeling” them. The labeled spins flow into the brain and diffuse into brain tissue and exchange with brain tissue water, and the steady-state regional tissue magnetization thus depends on the rate of tissue perfusion. Analysis of perfusion with ASL is similar to steady-state PET and SPECT methods, in which a radiotracer with a moderately short half-life (e.g., 15O-H$_2$O) is administered continuously, and a steady-state tracer accumulation within various tissue compartments is measured. The quantitative determination of perfusion with this method depends on a number of parameters (including relaxation rates), which are usually determined in separate experiments [160, 161]. Spin labeling techniques currently suffer from low SNR, which affects both the speed at which perfusion maps can be made and the lower limit of detectable perfusion. Additionally, ASL is limited by the in vivo 1H T$_1$ (of order 1 s at 1.5 T) which restricts the distance between the labeling and measuring regions.

The second MRI method, the exogenous contrast technique, is moderately invasive, requiring injection of a paramagnetic contrast agent. Exogenous MR contrast agents are injected as a bolus into the body. They come in two varieties: relaxivity agents and magnetic susceptibility agents. Relaxivity contrast agents shorten the proton longitudinal relaxation time (T$_1$) through a dipolar interaction between the proton nuclear spin and the paramagnetic contrast agent. Magnetic susceptibility contrast agents shorten the proton
transverse relaxation time (T_2) because of the strong dephasing local magnetic field gradients induced by the high magnetic susceptibility of the agent [162, 163]. The transit time of the bolus of contrast agent through tissue is very short (a few seconds), and unlike the steady-state approach used in ASL, the wash-in and wash-out kinetics of the changes in proton signal intensity are measured. There is a nonlinear relationship between the MR signal and the contrast agent concentration [164]. This leads to difficulty in the determination of tissue perfusion from the need to convert changes in regional MR signal intensity to contrast agent concentration.

Both of these MR perfusion imaging methods rely on the measurement of a difference in signal intensity between a magnetic-labeled state and a control state. This is proportional to perfusion but is not necessarily quantitative. Thus in these methods, MRI does not directly measure the tracer concentration; it must be measured indirectly through its small effect on MR signal intensity. As a result of the considerable 1H signal background in both cases, both techniques suffer from low SNR. ASL techniques can partially overcome this by signal averaging, but injected contrast methods are dose limited as to the amount of contrast that can given, and by the contamination of the measurement by tracer recirculation.

There is an increasing interest in the use of MR imaging in mapping flow and blood oxygenation changes for “activation” studies. Although quantitative perfusion measurements are not necessarily needed to map brain function for applications such as presurgical mapping, the additional information obtained by quantitative measure of perfusion changes could enhance the evaluation of complex diseases. Since the pioneering work of Roy and Sherrington [27], it is known that there exists a close spatial and temporal correspondence between local changes in brain neuronal activity and changes in regional cerebral blood flow (rCBF). Although the details of this flow regulation are not completely understood [165], it established that blood flow changes by 50% or more in grey matter within an area close to that of increased electrical activity [166], and within a few seconds after the onset of increased activity [167]. The PET technique [168] has been used for many years to measure rCBF during functional brain activation and is regarded by many as the “gold-standard” for quantitative rCBF measurement. The most widespread MRI technique for brain mapping is the functional MRI (fMRI) technique. The metabolic changes
associated with brain functional activation affect the concentration of paramagnetic deoxyhemoglobin content in tissue (the BOLD effect). However, functionally-induced changes in MR image intensity depend on several parameters, including blood flow, hematocrit, oxygen extraction, local vascular geometry, and baseline blood oxygen saturation [167]. Therefore, fMRI measures of regional metabolic brain activity, though tightly coupled to perfusion, cannot currently be used to measure perfusion quantitatively [169].

5.3 Laser-polarized 129Xe MR Tracer Theory

This section presents a new magnetic resonance tracer method for in vivo quantitative perfusion measurement. The very high SNR per atom of laser-polarized 129Xe, the zero biological background MR signal from the 129Xe nuclei, and the desirable chemical and biological properties of xenon make it possible to combine the advantages of MR based perfusion methods with the strengths of freely diffusible tracer methods. I will show that this new technique differs from other MR-based perfusion techniques in that changes in the regional 129Xe MR signal intensity correspond to changes in tracer concentration, and as a result the laser-polarized 129Xe magnetic resonance tracer technique can be regarded as directly comparable with PET tracer techniques, but is not subject to many of the limitations of radiotracer techniques.

After introduction into the lungs by ventilation, laser-polarized 129Xe is transported by blood flow and perfuses into tissue. A schematic of the flow of laser-polarized 129Xe magnetization in vivo is shown in figure 5.1. The 129Xe MR signal from perfused tissue is entirely due to in-flowing magnetization from the blood, and the 129Xe NMR signal in a given volume of tissue is a measure of the total 129Xe magnetic moment in that compartment. The transport of inert gases through the body is well described by the Kety-Schmidt equations (e.g., equation 5.4) which are widely used in models of xenon uptake for cerebral blood flow studies [170]. These equations are formulated in terms of tracer concentration per unit mass of tissue, but can be modified to describe 129Xe magnetization by the inclusion of NMR relaxation rates ($1/T_1$). Peled et al. [171] and Martin et al. [172] have published models which extend the Kety-Schmidt model in this way. In the region where 129Xe magnetization is sampled by RF pulsing (i.e., the dashed region of figure 5.1), the
discrete losses of longitudinal magnetization must be accounted for; a model to describe the \textit{in vivo} time evolution of laser-polarized ^{129}Xe magnetization in the dashed region of figure 5.1 is now presented.

Given that ^{129}Xe is a freely diffusible tracer \textit{in vivo} \cite{173}, in the absence of NMR pulsing, the time evolution of the tissue magnetization is

\[
\frac{d}{dt} M_T(t) = M_B^{\text{tissue}} f_{BT} - M_T(t) \left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right), \quad (5.5)
\]

where $M_T(t)$ is the longitudinal ^{129}Xe magnetization in the tissue of interest (per unit volume of tissue), M_B^{tissue} is the longitudinal ^{129}Xe blood magnetization at the tissue of inter-
est (per unit volume of blood), f_{BT} is the fractional blood flow (i.e., perfusion) to the tissue, λ is the xenon blood/tissue partition coefficient, and T_1 is the longitudinal relaxation time of 129Xe tissue magnetization. MR imaging experiment typically define perfusion as the volume of blood delivered to a unit volume of tissue per unit time. In this case, the units of f_{BT} in this case are milliliters of blood per milliliters of tissue per minute.

Longitudinal magnetization in conventional NMR arises *in situ* from the induced Boltzmann polarization, but in the description of laser-polarized 129Xe magnetization of equation 5.5, T_1 appears only as a sink of laser-polarized 129Xe magnetization. This is because the laser-polarized 129Xe polarization *in vivo* is orders of magnitude greater than the Boltzmann polarization for any magnetic field used in NMR. The form of equation 5.5 is similar to equations used in nuclear medicine to describe the wash-in of radiotracers (e.g., 15O-H_2O in PET). However, whereas the half-life of a radioisotope is independent of its environment, the 129Xe T_1 can depend on both the tissue composition and the local blood oxygenation level.

The 129Xe magnetization in arterial blood that perfuses the tissue of interest, M_B^{tissue}, is analogous to the “arterial input function” in the language of tracer kinetics. We assume that M_B^{tissue} can be made time-independent since 129Xe magnetization can be delivered by inhalation for times long relative to the typical several-second heart-tissue transit time. We neglect in equation 5.5 any contribution from 129Xe magnetization returning by recirculation, as it is expected to be very small given the short 129Xe T_1 in venous blood (approximately 4 s) [112] and the long total circulation times (approximately 20 s in humans [174]). Subject to the initial condition that the tissue magnetization is fully relaxed $M_T(t = 0) = 0$, the solution to equation 5.5 for the case where M_B^{tissue} is time-independent, is given by

$$M_T(t) = M_{EQ}\left(1 - e^{-\frac{f_{BT}}{\lambda + \frac{1}{T_1}}}\right),$$

where M_{EQ} is the steady-state value of $M_T(t)$,

$$M_{EQ} = \frac{f_{BT}M_B^{\text{tissue}}}{\frac{f_{BT}}{\lambda + \frac{1}{T_1}}}.$$
In order to realistically describe the NMR detectable 129Xe tissue signal, the loss of magnetization due to discrete NMR pulsing is now included. Chemical shifts of 129Xe allow spectral separation of gas, blood, and tissue resonances, and in the following discussion NMR tips are assumed to be applied only to the 129Xe tissue resonance. Following the notation of Look and Locker [175], M_N^- and M_N^+ are the longitudinal tissue magnetizations just prior to, and immediately after the Nth pulse. The time between NMR tips is τ. The fraction of longitudinal magnetization remaining immediately after a tip of angle α is simply $\cos \alpha$, so we can write

$$M_{N+1}^+ = M_N^\cos \alpha. \quad (5.8)$$

Between tips, the longitudinal tissue magnetization approaches M_{EQ}, as given by equation 5.6. The time-dependence of the longitudinal tissue magnetization, is plotted in figure 5.2. It is calculated with equation 5.6 for the time interval between pulses and with equation 5.8 for the loss after each pulse.

An exact solution for the tissue magnetization as a function of pulse number is desired. Rewriting $M_T(t)$ in terms of the discrete time interval τ, equation 5.6 becomes

$$M_{N+1}^- = M_N^+ + (M_{EQ} - M_N^+ \left\{ 1 - e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1}\right)\tau} \right\}). \quad (5.9)$$

Combining equation 5.8 and equation 5.9 and writing in terms of M_N^-:

$$M_{N+1}^- = M_N^\cos \alpha + (M_{EQ} - M_N^\cos \alpha) \left\{ 1 - e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1}\right)\tau} \right\}. \quad (5.10)$$

Making the substitution $u = e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1}\right)\tau}, y = \cos \alpha$, and defining the initial tissue magnetization as M_0, M_N is related to M_0 by induction according to equation 5.10:

$$M_1 = uyM_0 + (1 - u)M_{EQ} \quad (5.11)$$

$$M_2 = u^2 y^2 M_0 + (1 - u)(1 + uy)M_{EQ} \quad (5.12)$$
where we now drop the superscripts. By the convergence of geometric sums, equation 5.14

\[M_N = u^N y^N M_0 + M_{EQ} (1 - u) \sum_{q=0}^{N-1} u^q y^q, \quad (5.14) \]

Figure 5.2: Time-dependence of the longitudinal 129Xe tissue magnetization relative to the steady-state blood magnetization at the tissue, M_B^{tissue}, evaluated for several tip angles. Typical rat grey matter parameters are used for f_{BT}, T_1, and λ. The 0° curve is well described by the models of Martin et al., and Peled et al. [171, 172].

\[M_3 = u^3 y^3 M_0 + (1 - u)(1 + uy + u^2 y^2)M_{EQ} \quad (5.13) \]
is rewritten

\[M_N = M_0 u^N y^N + M_{EQ}(1 - u) \left(\frac{1 - u^N y^N}{1 - uy} \right). \quad (5.15) \]

Explicitly, equation 5.15 is

\[
M_N = M_0 \cos \alpha \ e^{-N \left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right) \tau} \left\{ \frac{f_{BT} M_{\text{tissue}}}{\lambda + \frac{1}{T_1}} \left(1 - e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right) \tau} \right) \right\}
\]

\[
\left[1 - \cos \alpha e^{-N \left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right) \tau} \right] \left[1 - \cos \alpha e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right) \tau} \right]
\]

\[
S_{N} \propto M_{N} \sin \alpha . \quad (5.17)
\]

In steady-state \((N \to \infty)\), the \(^{129}\text{Xe}\) tissue signal is (from equation 5.17)

\[
S_{\infty} \propto \frac{f_{BT} M_{\text{tissue}}}{\lambda + \frac{1}{T_1}} \left[1 - e^{-\left(\frac{f_{BT}}{\lambda} + \frac{1}{T_1} \right) \tau} \right] \sin \alpha . \quad (5.18)
\]

The calculated \textit{in vivo} tissue uptake of polarized \(^{129}\text{Xe}\) given by equation 5.17 is shown in figure 5.3. The tissue signal is plotted in terms of \(M_{\text{B}}^{\text{tissue}}\), the steady-state blood magnetization at the tissue. Typical rodent grey matter parameters were used in generating this family of curves: \(f_{BT} = 1 \text{ mL/mL/min} [115]\), \(T_1 = 30 \text{ s} [25]\), and \(\lambda = 0.79 [90]\). The rate at which the \(^{129}\text{Xe}\) tissue signal approaches its steady-state value strongly depends on the NMR parameters: tip angle \(\alpha\) and sampling rate \(1/\tau\). The destruction of \(^{129}\text{Xe}\) magnetization by RF pulsing is under experimental control and can be adjusted to isolate certain features of \(^{129}\text{Xe}\) magnetization \textit{in vivo}.

113
The steady-state 129Xe tissue signal of equation 5.18 is plotted as a function of f_{BT} in figure 5.4. At low tip angles the contribution of f_{BT} to the steady-state 129Xe tissue signal cannot be determined without knowledge of T_1. However, at high tip angles relaxation due to NMR sampling dominates, and the steady-state 129Xe tissue signal is relatively independent of T_1. This is clearly seen in figure 5.4, where at large tip angles the influence of local T_1 on the steady state 129Xe magnetization is negligible. The steady-state 129Xe tissue signal in this high tip-angle regime is simply proportional to blood flow, independent of T_1. The steady-state 129Xe tissue signal of equation 5.18 is plotted as a function of α in fig-

Figure 5.3: Time dependence of the laser-polarized 129Xe tissue signal from equation 5.17, plotted relative to the steady-state blood magnetization at the tissue, $M_{B_{tissue}}$. The rate at which the 129Xe tissue signal reaches steady-state strongly depends on the 129Xe tissue resonance tip angle α, and the NMR pulse rate, τ. Typical rat grey matter parameters (f_{BT}, T_1, and λ) were used in generating this family of curves. For all these curves, $\tau = 1$ s.
These figures illustrate a method for independent extraction of T_1 and f_{BT}; the steady-state 129Xe tissue signal measured as a function of λ/H_9 can be fit to equation 5.18 to extract both T_1 and f_{BT}. A simulation of this method is presented below.

Figure 5.4: Steady-state 129Xe tissue signal from equation 5.18 plotted as a function of f_{BT} for a family of tissue T_1. For all these curves, $\lambda = 0.79$ and $\tau = 1$ s.

5.4 Estimate of Steady-State Brain SNR

As demonstrated in Chapter 4, 129Xe polarized to approximately 5% and delivered to rats by inhalation results in a 129Xe magnetic moment density in brain tissue sufficiently large to image (figure 4.14). The 129Xe in vivo brain spectrum (figure 4.12) reveals a rich 129Xe dissolved-phase structure, dominated by the 129Xe resonance at 195 ppm. Having
observed 129Xe-tissue NMR resonances in the brain, the next step is a feasibility estimate of the 129Xe magnetic resonance tracer method of perfusion measurement, described in section 5.3, using experimentally reasonable parameters for rat grey matter. The ability to make a measurement of tissue perfusion with laser-polarized 129Xe NMR relies on the attainable signal-to-noise ratio (SNR) of the 129Xe tissue and blood resonances. In this section, the measured steady-state 129Xe-blood signal from the rat thorax is used to scale the model of equation 5.18 to obtain an estimate of the steady-state 129Xe-tissue SNR in rat grey matter. This estimate is used in section 5.5 for statistical simulations of the 129Xe

Figure 5.5: Steady state 129Xe tissue signal (equation 5.18) plotted as a function of tissue tip angle α, for several values of f_{BT}. For all these curves, $\tau = 1$ s and the typical rodent grey matter parameters of $T_1 = 30$ s and $\lambda = 0.79$ are used. Typical experimental SNR (per pulse) obtained with the scale factor ζ is shown on right-hand scale (see section 5.4 for details).
magnetic resonance tracer method. The tissue SNR estimate is then discussed in relation-
ship to our \textit{in vivo} rat brain spectroscopy results.

Estimates of the SNR of laser-polarized 129Xe in perfused brain tissue relative to the
SNR of proton MRI have been made previously [171, 172]. These estimates use compart-
mental models to transport inspired laser-polarized 129Xe gas through the lungs, arterial
blood, and finally into cerebral tissue, and the ratio of the cerebral polarized 129Xe SNR to
the 1H SNR is given as the ratio of cerebral tissue 129Xe magnetization to the typical \textit{in vivo}
1H magnetization. These models neglect the destruction of 129Xe magnetization by NMR

Figure 5.6: Steady state 129Xe tissue signal (equation 5.18) plotted as a function of tissue tip
angle α, for several values of tissue T_1. For all these curves, $\tau = 1$ s and the typical rodent
grey matter parameters of $f_{BT} = 1$ mL/mL/min and $\lambda = 0.79$ are used. As in figure 5.4, the
typical experimental SNR (per pulse) obtained with the scale factor ζ is shown on right-
hand scale.
pulsing and can not be used to estimate the 129Xe cerebral magnetization except in the limit of small NMR tip angle. One way to calculate the 129Xe tissue magnetization in the presence of NMR tipping would be to extend these compartmental models of \cite{171, 172} with equation for the dashed region of figure 5.1. Instead, we now present an estimate of typical 129Xe tissue SNR based on our \textit{in vivo} 129Xe measurements, obtained with the polarizer operating in its typical configuration. We avoid the complication of additional model-dependent assumptions by looking at the actual 129Xe NMR signal acquired under specific experimental conditions, including the \textit{in vivo} efficiency of 129Xe gas polarization delivery and knowledge of pulmonary parameters such as the 129Xe T_1 in the lung.

5.4.1 129Xe blood magnetization

It is difficult to estimate the typical steady-state cerebral 129Xe-tissue SNR from the \textit{in vivo} 129Xe brain spectroscopy results of section 4.6 because the 129Xe grey matter resonance at 195 ppm never reached steady-state during the experiment. Additionally, the \textit{in vivo} dynamics of the grey matter resonance (figure 4.13) were not the result of a simple uptake/washout experiment from which the 129Xe grey matter tissue saturation rate constant could be measured and the steady-state value calculated. Analysis of the 129Xe grey matter resonance dynamics of figure 4.13 is complicated by the fact that the changing 129Xe signal was due to many non-quantifiable factors including the anesthetic effect of the xenon itself. In order to circumvent some of the difficulty in interpreting the \textit{in vivo} brain results, a measured steady-state 129Xe-blood signal obtained from an experiment in the thorax will now be used to estimate the steady-state 129Xe-blood magnetization at the brain, and this result and equation 5.18 used to scale the results shown in figure 5.5 and figure 5.6 in units of steady-state grey matter tissue SNR for an typical measurement.

The relevant \textit{in vivo} thoracic results have been described in detail in Chapter 4. In particular, whole body 129Xe CSI in the rat with a 30° tip angle was shown to constrain 129Xe magnetization to the thorax by sampling and destroying 129Xe longitudinal magnetization before it reaches distant organs. A 129Xe spectrum obtained from the rat thorax is shown in figure 5.7. This spectrum was obtained while the 129Xe blood resonance was at steady state (\textit{i.e.,} $t = 25$ s from the dataset of figure 4.3). The intensity of the 129Xe blood resonance in the thorax is dominated by polarized 129Xe in oxygenated thoracic blood.
Circulatory round-trip times are generally long with respect to the blood T_1, so we neglect the contribution from polarized ^{129}Xe in venous thoracic blood. We assume the volume of blood contributing to the thoracic ^{129}Xe blood signal, V_B^{thorax}, is equal to the left ventricle blood volume ($LVBV$) and the arterial fraction of the total pulmonary blood volume (PBV). Assuming that the pulmonary blood volume is split uniformly between the venous and arterial sides, the volume of blood contributing to the thoracic ^{129}Xe blood NMR signal is

$$V_B^{\text{thorax}} = LVBV + \frac{1}{2} PBV. \quad (5.19)$$

Figure 5.7: Individual NMR spectrum of laser-polarized ^{129}Xe in the rat thorax. This spectrum was obtained at $t = 25$ s, after the ^{129}Xe blood resonance had achieved steady state. This spectrum was obtained with two phase-cycled averages, with $TR = 428$ ms. The tip angle for the blood resonance is approximately 30°, and for the gas resonance is estimated at 1°.
In steady-state, the total 129Xe-blood magnetic moment in thoracic blood is

$$\mu_B^{\text{thorax}} = M_B^{\text{thorax}} V_B^{\text{thorax}}, \quad (5.20)$$

where M_B^{thorax} is the steady-state 129Xe thoracic blood magnetization (i.e., the magnetic moment concentration). The NMR signal is the Fourier transform of the detected FID, and is characterized by a Lorentzian line. The area under this line (i.e., the total signal energy) is proportional to the transverse magnetization. We define the thoracic 129Xe-blood signal as

$$\sigma_B^{\text{thorax}} = \Gamma_B^{\text{thorax}} A_B^{\text{thorax}} = \kappa \mu_B^{\text{thorax}} \sin \beta, \quad (5.21)$$

where A_B^{thorax} and Γ_B^{thorax} are the measured amplitude and width (FWHM) of the thoracic 129Xe-blood resonance, κ is a factor which depends on the characteristics of the probe and receiver, and β is the 129Xe-blood resonance tip angle. The SNR of the thoracic 129Xe blood signal is defined in the frequency domain as

$$(\text{SNR})_B^{\text{thorax}} = \frac{A_B^{\text{thorax}}}{\sigma_N}, \quad (5.22)$$

where σ_N is the r.m.s. value of the noise signal [176]. Combining equation 5.20, 5.21, and 5.22, we write the steady-state thoracic 129Xe-blood SNR as,

$$(\text{SNR})_B^{\text{thorax}} = \frac{\kappa M_B^{\text{thorax}} V_B^{\text{thorax}} \sin \beta}{\Gamma_B^{\text{thorax}} \sigma_N}. \quad (5.23)$$

In order to estimate 129Xe tissue SNR, we need to estimate the blood magnetization at the tissue of interest, M_B^{tissue}. To do this, we again consider the case where NMR sampling is constrained to the tissue resonance and assume that 129Xe-blood magnetization decays only due to T_1 in the blood. The steady-state value of the 129Xe-blood thoracic magnetization M_B^{thorax} is the source of magnetization which perfuses distant tissue, and so the arterial magnetization is simply
where M_{B}^{tissue} is the steady-state 129Xe blood magnetization at the tissue of interest, T_{1B} is the 129Xe relaxation time in arterial blood, and t_{gr} is the blood transit time from the left ventricle to the tissue of interest. Writing the thoracic blood SNR in terms of the blood magnetization at the tissue by combining equation 5.23 and equation 5.24,

$$(SNR)^{thorax}_{B} = \frac{\kappa M_{B}^{tissue} V_{B}^{thorax} \sin \beta}{\Gamma_{B}^{thorax} \sigma_{N} e^{-t_{gr}/T_{1B}}}.$$

5.4.2 129Xe tissue magnetization

We now estimate the steady-state 129Xe brain SNR in the highly-perfused grey matter of the rat brain in order to evaluate the feasibility of measurement of cerebral perfusion with the 129Xe magnetic resonance tracer method. As above, the total 129Xe-tissue magnetic moment in the tissue of interest is

$$\mu_{T} = M_{T} V_{T},$$

and the steady-state 129Xe tissue SNR at the tissue of interest is

$$(SNR)^{T}_{T} = \frac{\kappa M_{T} V_{T} \sin \alpha}{\Gamma_{T} \sigma_{N}},$$

where M_{T} is the steady-state 129Xe tissue magnetization, V_{T} is volume of tissue contributing to the 129Xe tissue signal, α is the 129Xe tissue resonance tip angle, and Γ_{T} is the FWHM of the 129Xe-tissue resonance. We assume that the probe, receiver and noise characteristics (and thus κ) remain unchanged from equation 5.21.

5.4.3 Scaling factor ξ

The ratio of the steady-state transverse 129Xe-tissue magnetization to the steady-state longitudinal 129Xe-blood magnetization plotted in figure 5.5 and figure 5.6, can now be rewritten in terms of measurable quantities: the steady-state 129Xe blood and tissue SNRs. Combining equation 5.25 and equation 5.27,
The steady-state 129Xe-tissue SNR can now be expressed in terms of $\frac{(SNR)_{T}}{(SNR)_{B}^{thorax}} = \frac{M_{T}\sin\alpha}{M_{B}^{tissue}} \frac{V_{T}}{V_{B}^{thorax}} \frac{\Gamma_{B}^{thorax}}{\Gamma_{T}} \frac{e^{-t_{BT}/T_{1h}}}{\sin\beta}$ \hfill (5.28)

where we have defined a dimensionless scale factor ζ,

$$
\zeta = \frac{(SNR)_{B}^{thorax}}{\sin\beta} \frac{V_{T}}{V_{B}^{thorax}} \frac{\Gamma_{B}^{thorax}}{\Gamma_{T}} \frac{e^{-t_{BT}/T_{1h}}}{\sin\beta}.
$$

Evaluating ζ for grey matter in a typical 250 g male Sprague-Dawley rat (with the parameter values specified in table 5.1), we obtain $\zeta = 220$. This value of ζ is used to scale $\frac{(M_{T}\sin\alpha)}{M_{B}^{tissue}}$ in figure 5.5 and figure 5.6, with the estimated steady-state tissue SNR indicated along the right-hand axis of these figures. It is important to note both the limitations and assumptions of this in vivo 129Xe-tissue SNR estimate. The measurement of the thoracic 129Xe-blood SNR used to calculate ζ was made under typical polarizer operation conditions (approximately 4.5% 129Xe polarization with a 60% xenon fraction) with typical NMR parameters (i.e., probe quality factor Q, filling factor, and receiver bandwidth). These conditions are by no means assumed to be optimal, however the measurement of the 129Xe-tissue resonance is assumed to be made with these parameters unchanged from the thoracic experiment. Additionally, the volume of thoracic blood contributing to the 129Xe-blood signal and the volume of grey matter contributing to the 129Xe-tissue resonance are estimates based on generic rat anatomy. All combined, these estimates represent perhaps order of magnitude certainty for the attainable 129Xe-grey matter SNR with reasonable 129Xe polarization levels.

5.4.4 Results from 129Xe grey matter spectroscopy

As a check of the validity of the 129Xe-grey matter SNR estimate, we now compare the calculated steady-state 129Xe grey matter SNR for a 250 g male Sprague-Dawley rat with the measured in vivo experimental results. We assume typical rodent grey matter parameters of $f_{BT} = 1$ mL/mL/min, $\lambda = 0.79$, and $T_{1} = 32$ s, and use the NMR parameters from figure
4.12: $\alpha = 20^\circ$ and $\tau = 500$ ms. Evaluating the model of equation 5.18 for grey matter we find ζ for grey matter in a 250 g Sprague-Dawley rat.

<table>
<thead>
<tr>
<th>PBV (mL/100 g BW)</th>
<th>$LVBV$ (mL/100g BW)</th>
<th>V_B^{thorax} (mL, 250 g rat)</th>
<th>V_T (mL)</th>
<th>T_{1B} (sec)</th>
<th>t_{BT} (sec)</th>
<th>$(SNR)_B^{thorax}$</th>
<th>Γ_B^{thorax} (Hz)</th>
<th>Γ_T (Hz)</th>
<th>$\sin \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33a</td>
<td>0.1a</td>
<td>0.68b</td>
<td>1.2c</td>
<td>6d</td>
<td>2e</td>
<td>18f</td>
<td>150g</td>
<td>31h</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 5.1: Parameters used to evaluate ζ for grey matter in a 250 g Sprague-Dawley rat.

- a. from [118]
- b. from equation 5.19.
- c. Total brain volume is nominally 2 mL [177]. An 60% grey matter volume fraction is assumed here.
- d. from [24].
- e. estimated.
- f. from figure 5.7.
- g. from table 4.1.
- h. from table 4.3.

We now compare this to the 129Xe brain spectrum acquired from a 250 g male Sprague-Dawley rat, shown in figure 4.12. This in vivo spectrum was acquired ($N = 256$ pulses) during xenon uptake, and the 129Xe grey matter signal at 195 ppm never reached steady-state during the measurement; the dynamics of this resonance are shown in figure 4.13. The measured SNR of the 195 ppm resonance is 55. With $N = 256$, the estimated steady-state 129Xe grey matter SNR is 116. It is not surprising that the predicted steady-state 129Xe grey matter SNR is higher than the grey matter SNR obtained from a time-averaged spectrum acquired during uptake; however they agree within a factor of two.

In order to more carefully compare the steady-state 129Xe-grey matter calculation to experiment, we examine an individual spectrum from the brain 129Xe spectroscopy data set. The spectrum in figure 5.8 was acquired at $t = 32$ s after the start of xenon delivery, where the 195 ppm grey matter resonance was at its maximum value achieved during the run. Although 129Xe-tissue steady-state was not achieved during this experiment, we expect the spectrum obtained at this time point to be closer to the steady-state value. The measured SNR of this spectrum is 6, and the calculated steady-state 129Xe-grey matter SNR (with $N = 2$) is 10. Thus the scaling of figure 5.5 and figure 5.6 obtained with ζ can be considered representative of typical experimentally values within a factor of two.
Determination of f_{BT} and T_1

In order to determine the efficacy with which the tissue perfusion f_{BT} and the 129Xe tissue depolarization time T_1 can be extracted from measurement of the tip angle dependence of the steady-state 129Xe tissue NMR signal, we simulated realistic experimental datasets by evaluating equation 5.18 for a wide range of T_1 and f_{BT} values. For each value of T_1 and f_{BT}, we calculated $(M_T \sin \alpha) / M_B^{tissue}$ for each of 9 values of the 129Xe-tissue resonance tip angle α spaced evenly from 10° to 90°. To these datasets, we added Gaussian-distributed

Figure 5.8: Individual 129Xe spectrum acquired from the rat head. NMR pulsing was synchronous with the introduction of the Xe/O₂ mixture, and this spectrum was acquired at $t = 32$ s after the start of xenon delivery. The uptake dynamics are shown in figure 4.13. The spectrum shown here is the maximum tissue resonance achieved during this run, however 129Xe-tissue steady-state was not achieved during this experiment. The SNR of the 195 ppm grey matter resonance ($N = 2$ pulses) is approximately 6.
noise. We fixed the noise standard deviation and not the SNR as a function of T_1, f_{BT} and α in these datasets to simulate experimental data realistically. Two noise levels were used, corresponding to a range of tissue SNR from 5 to 85 and from 1 to 17, over the ranges of α, f_{BT} and T_1 used in the simulation. These noise levels were picked because the range of SNRs is typical of both our experimental results and our calculated 129Xe brain tissue SNRs, for experiments of a reasonable number of pulses.

In order to extract f_{BT} and T_1 from the simulated data, it is convenient to rewrite equation 5.18 as:

$$\frac{M_T \sin \alpha}{M_{tissue}^B} = A \frac{(1 - e^{-B\tau})}{[1 - \cos \alpha e^{-B\tau}]} \sin \alpha$$

(5.31)

where

$$A = \frac{f_{BT}}{\lambda + \frac{1}{T_1}}, \quad B = \left(\frac{f_{BT}}{\lambda + \frac{1}{T_1}}\right)$$

(5.32)

The coefficients A and B are determined by a non-linear least-squares fit of equation 5.31 to the steady-state tissue signal measured as a function of α. T_1 and f_{BT} are then determined via the algebraic relationships

$$f_{BT} = AB, \quad T_1 = \frac{1}{B\left(1 - \frac{A}{\lambda}\right)}.$$

(5.33)

Note that the determination of f_{BT} from the steady-state tissue signal is independent of knowledge of the partition coefficient λ.

T_1 and f_{BT} were extracted from the best fit of equation 5.31 to the simulated datasets, with all parameters assumed to be known. This fitting procedure was run as a Monte Carlo, with the fit versus α for a given T_1 and f_{BT} repeated 10 times with random Gaussian noise added to each of the points. The result of this procedure is shown in figure 5.9 and figure 5.10, for two noise amplitudes. The best-fit parameter values of A and B were used in equation 5.33 to determine f_{BT} and T_1. These are plotted against the actual values, with the error bars indicating the standard deviation of the extracted parameter obtained from the Monte Carlo simulation. The solid lines are drawn to guide the eye along the line with
It is clear from these results that this procedure provides accurate determinations of f_{BT} and T_1 and is feasible over the expected range of *in vivo* f_{BT} and T_1, for the SNR.

Figure 5.9: T_1 extracted from simulated data. The T_1 values obtained from a best fit of the simulated data to equation 5.31 are plotted against the actual T_1. The solid line is drawn to guide the eye along the line with unity slope. For all these curves, $\lambda = 0.79$ and $\tau = 1 \text{ s}$.

Figure 5.10: f_{BT} extracted from simulated data. The f_{BT} values obtained from a best fit of the simulated data to equation 5.31 are plotted against the actual f_{BT}. The solid line is drawn to guide the eye along the line with unity slope. For all these curves, $\lambda = 0.79$ and $\tau = 1 \text{ s}$.
range of 129Xe-tissue NMR we have experimentally observed. These simulations demonstrate that straightforward control of NMR parameters will allow f_{BT} and T_1 to be extracted independently from the steady-state 129Xe tissue signal.

5.6 Discussion

This section addresses the caveats and likely difficulties in the application of 129Xe magnetic resonance tracer method for measurement of tissue perfusion. The possible applications of this new method are summarized in conclusion.

Absolute measurement of f_{BT} in the biologically relevant units of mL of blood/mL of tissue/min necessitates knowledge of the steady-state 129Xe blood magnetization M_B^{tissue}, and quantitative perfusion maps can be calculated if this is known. Determination of M_B^{tissue} requires measurement of the 129Xe NMR signal in a known volume of blood in vivo. In section 5.4, assumptions about the origin of the thoracic 129Xe-blood signal under particular experimental conditions allowed M_B^{tissue} to be estimated. A general and more accurate approach is to use the 129Xe blood signal from a single voxel of blood in the carotid artery (for rCBF measurement) or in the left heart chamber (for cardiac perfusion measurement) as a direct measure of M_B^{tissue}. Measurements of this type should be feasible since we have shown in Chapter 4 that it is possible to isolate the 129Xe blood signal arising from a single voxel in the rodent heart using localized NMR spectroscopy. Depending on the voxel volume, many acquisitions may have to be averaged to get a reasonable blood signal from a voxel small enough to be homogeneously filled with blood in the carotid. If this is not possible, the blood signal in the heart may suffice as a measure of M_B^{tissue}. In particular, as the heart-brain transit time is reasonably short compared to the 129Xe-blood T_1, NMR measurement of the 129Xe blood magnetization in the left ventricle will be about 1.4 times larger than at the brain and may be more easily acquired given the large volume of blood in the left ventricle.

Image contrast in MRI comes from a variety of sources, and depending on the imaging sequence the resultant MR image depends on the physical parameters. Differences in the value of a physical parameter can be inferred from images acquired with sequences where the signal is most affected by variation in the desired parameter; these qualitative
images are known as “weighted” images, (e.g., T1-weighted, T2-weighted). Even if M_T is uncalibrated in units of $M_{B\text{tissue}}$, a perfusion-weighted image can be generated by tomographic measurement of the steady-state 129Xe-tissue signal at high tip angle. Cerebral functional studies can be made by the subtraction of two images acquired at high tip angle: one acquired during functional activation and one acquired during baseline activation. These perfusion-weighted images also have the advantage that they can be acquired relatively quickly, since the steady-state 129Xe tissue signal needs to be measured at only a single tip angle.

An important caveat for the method we describe here follows from the relatively small spectroscopic separation of the 129Xe blood and tissue NMR resonances, roughly 15 ppm. This corresponds to a 350 Hz blood-tissue separation at 2 T. The observed 129Xe T_2^* varies from 2 ms in blood to 20 ms in brain tissue (see table 4.3), corresponding to NMR spectral linewidths of about 150 Hz and 15 Hz, respectively. Thus an RF pulse centered about the tissue resonance with duration short enough (i.e., with a sufficient bandwidth) to tip the 129Xe tissue magnetization will modestly perturb the 129Xe-blood magnetization. If we assume that the 129Xe-blood longitudinal magnetization is tipped by an angle β, and $M_{B\text{tissue}}$ is the steady-state value prior to the NMR pulse, then immediately following the tip the longitudinal 129Xe-blood magnetization at the tissue of interest is simply $M_{B\text{tissue}} \cos \beta$. Repeated pulsing will result in $M_{B\text{tissue}}$ achieving a steady-state value that is less than the unperturbed value. Under certain experimental conditions, this perturbation may be entirely negligible. For example, the blood flow rate to tissue in typical regions of interest is high compared to the RF pulsing rate $1/\tau$, and the total blood volume in the rat brain is relatively low, roughly 5% of the total brain volume [138]. Thus it seems reasonable to assume that with typical NMR pulse rates on the order of $\tau \sim 1$ s, the blood magnetization at the tissue, $M_{B\text{tissue}}$, will be completely replenished between pulses, minimizing the influence of RF pulsing on the steady-state value of $M_{B\text{tissue}}$.

If the blood flow is insufficient to replenish $M_{B\text{tissue}}$, it is possible that this perturbation can be minimized with proper design of the RF pulse shape and phase. A thorough treatment of amplitude-modulated RF pulses that will excite a specific band of frequencies within a complex NMR spectrum with uniform intensity and phase but with negligible excitation is given by Geen et al. [139].
Accurate quantification of perfusion with the 129Xe magnetic tracer technique requires accurate measurement of the 129Xe-tissue tip angle α. In general the geometry of the RF probe determines the degree of uniformity of the tip angle distribution in the sample. An aspect of coil design that can improve the tip angle uniformity in the sample is the use of a transmitter coil which provides a homogeneous B_1 field throughout the tissue. This can be achieved by using a volume coil (e.g., a quadrature birdcage coil [178, 179]) or a slotted tube resonator [81]. An essentially homogeneous B_1 field can also be obtained by using a surface coil transmitter which is much larger than the receiver coil [180].

Another approach to tip angle calibration and uniformity is the use of RF pulses which are based on adiabatic spin rotation and are part of a class of pulses known as BIR (B_1 Insensitive Rotation) [83-86]. These adiabatic pulses generate a uniform tip angle despite spatial variations in B_1 (even over several orders of magnitude), provided that the B_1 field is above a threshold value, thereby combining the high sensitivity of surface coil receivers with uniform sample excitation. These adiabatic pulses have the additional advantage that they eliminate the calibration of RF power between experiments. We have performed promising preliminary experiments with 129Xe NMR using BIR-4 pulses. The tip angle uniformity over a large volume of 129Xe gas using a surface coil was excellent, however the off-resonant behavior of these BIR-4 pulses is quite complicated, and 129Xe magnetization outside the excitation profile was dephased and destroyed. The realization of a 129Xe-tissue-selective BIR pulse with no spin-destruction outside the excitation bandwidth may be very difficult, but remains to be explored.

As shown above in equation 5.33, the determination of f_{BT} using the steady-state 129Xe NMR tracer method does not depend on the xenon blood-tissue partition coefficient λ. In addition, 129Xe-tissue T_1-weighted images can be made without knowledge of λ (i.e., maps of T_1/λ). Nevertheless, quantitative determination of 129Xe-tissue T_1 depends on knowledge of λ, which is currently determined from ex vivo studies. Therefore, accurate in vivo determination of λ remains an important challenge if 129Xe T_1 measurements are to be fully exploited for their possible diagnostic value. In the simulations of section 5.5, we assumed λ was known exactly. However, the xenon-blood partition coefficient varies widely across tissue types (see table 4.2), and in the various brain tissues by almost a factor of two. Additionally, the partition coefficient may be a function of hematocrit level and tis-
sue pathology.

It is worth emphasizing that the 129Xe magnetic tracer method for determination of f_{BT} is independent of both the local 129Xe-tissue T_1 and the 129Xe-blood T_1. Although the 129Xe-blood T_1 will affect the magnitude of the 129Xe-tissue magnetization, all measurements of M_T can be normalized to measurements of M_B^{tissue} arriving via blood flow at the tissue. The ratio, $(M_T \sin \alpha) / M_B^{tissue}$, is fit in the procedure of section 5.5, and although M_B^{tissue} must be time-independent during a measurement, there is no requirement that it remain constant from run to run. Independence of the 129Xe-blood T_1 is critical, as the blood T_1 may depend on many factors including oxygenation, hematocrit, and vessel size.

An assumption central to the 129Xe magnetic tracer technique presented in this chapter is that the 129Xe-tissue magnetization achieves steady-state during laser-polarized 129Xe inhalation. Although we have observed saturation of the 129Xe-blood signal in the rat thorax, saturation has not been observed in experiments of 129Xe uptake into rat grey matter (typically during inhalation of a 60% xenon/40% O_2 mixture). It is known that in humans the inhalation of high concentrations of xenon produces marked effects: 60–70% xenon produces general anesthesia, 40–50% xenon results in light-headedness, euphoria, and changes in the electroencephalogram [134, 181-183], and in all of these cases cerebral blood flow is affected. A similar pharmacological effect is likely the dominant cause of the time-dependent decrease in the 129Xe grey matter resonance shown in figure 4.13.

Non-anesthetic doses of 35% inhaled xenon are frequently employed in clinical human brain studies with xenon CT using a steady-state method [22, 184-192]. At these sub-anesthetic levels of 35% xenon, little or no effect on rCBF during inhalation has been observed in PET studies [193], nor have significant increases in intercranial pressure been observed at these levels [194]. Therefore, it is reasonable to expect that inhalation of such lower concentrations of laser-polarized xenon will lead to grey matter steady-state 129Xe NMR signal without significant changes in rCBF.

We have demonstrated a highly promising method for the use of laser polarized 129Xe NMR to measure tissue perfusion directly. This method is particularly suited to measurement of rCBF, as well as cardiac and kidney perfusion – all organs from which we have measured significant 129Xe-tissue MR signal. Based on our studies in rodents, and previous data on the pharmacological effects of xenon inhalation, an inhaled 35% $Xe/65% O_2$ mix-
ture with a nominal 5% 129Xe polarization will provide sufficient SNR in grey matter to make this new method feasible. At high tip angles, images of the steady-state 129Xe tissue magnetic moment density are maps of local tissue perfusion, f_{BT}. As images of the 129Xe tissue NMR signal in the rodent brain have already been achieved, brain activation studies should be possible by watching correlations of the high tip angle 129Xe steady-state tissue signal (i.e., f_{BT}) with an applied stimulus. In addition, quantitative determination of f_{BT} and T_1 can be provided by measurement of the steady-state 129Xe tissue signal as a function of 129Xe-tissue tip angle α. The determination of f_{BT} with this method is independent of both the 129Xe-tissue T_1 and partition coefficient λ. Given sufficient 129Xe tissue SNR, tomographic T_1 and perfusion maps also follow from this technique.
Conclusion

We have demonstrated that 129Xe polarized to approximately 5% and delivered to rats by inhalation results in a 129Xe magnetic moment density in perfused tissues sufficiently large to image with chemical-shift MRI. Additionally, we have shown that careful control of the NMR parameters will allow laser-polarized 129Xe to be used as a magnetic resonance tracer \textit{in vivo}. The next major advances in the use of these methods will accompany increases in 129Xe polarization. This chapter outlines some of the places where there is the potential to make significant gains in 129Xe polarization and production rates. A summary of future prospects for the 129Xe magnetic resonance tracer method, and some suggestions of additional applications for large quantities of polarized 129Xe, conclude this dissertation.

6.1 SNR and Spatial Resolution

The spatial resolution of \textit{in vivo} dissolved-phase 129Xe MRI is limited by the attainable 129Xe SNR. For a given imaging sequence, there is a simple relationship between voxel size and SNR [195, 196]; for an imaging experiment of a fixed number of RF pulses, the amount of signal in a voxel is proportional to the size of the voxel, \textit{i.e.},

$$SNR \propto \Delta V,$$ \hspace{1cm} (6.1)

where the spatial resolution is characterized by the voxel dimensions, $\Delta V = \Delta x \Delta y \Delta z$. In practice, the voxel size in an MR image is typically chosen to give an acceptable SNR for the region of interest. A factor of ten increase in 129Xe polarization from the approximately
3.5% polarization used to acquire the 2D CSI brain image of figure 4.14 will allow images (with the same SNR per voxel) to be obtained with 10 μL voxels. This increase in 129Xe polarization from the modest 3–7% used in the in vivo experiments of this thesis to 35% will allow the spatial resolution of 129Xe images to approach that of standard 1H MR images (i.e., 1–2 μL) over reasonable acquisition times. The following sections address several directions where significant increases in 129Xe polarization should be attainable on near- and moderate- time scales.

6.1.1 Wall coatings

Improvements in wall coatings that reduce wall-induced 129Xe relaxation in the optical pumping cell can lead to significant increases in the 129Xe polarization until such point as $\Gamma_{wall} \ll \gamma_{SE}$. As shown in figure 3.8, even a factor of two increase in T_{wall}, from 300 seconds to 600 seconds, will result in an calculated 30% increase in 129Xe polarization. In particular, the surface-induced relaxation of 129Xe is assumed to be due to the dipolar cross-relaxation between the proton spins on the surface and the nuclear spin of the 129Xe [57, 65, 197]. The probability of a 129Xe spin flip at the surface can be reduced in several ways. One is to lower the total magnetic moment of the coating nuclei by replacing them with deuterons. The deuterium magnetic moment is 6.5 times smaller than the proton, and deuterated paraffin was first investigated for wall coatings in Rb vapor cells [198]. The use of deuterated or partially deuterated silanes as wall coatings for 129Xe may prove to be quite fruitful.

A second way to reduce the probability of a 129Xe-surface spin-flip is to reduce the interaction time between the 129Xe and the surface by decreasing the permeability of the coating. Fluorinated coatings have been suggested in this regard [65, 199]. One potential problem with this class of coatings for OPSE cells may be the strong affinity of Rb for fluorinated surfaces (such as Teflon) which results in rapid carbon formation at the surface.

6.1.2 Laser diode spectral narrowing

High power broadband LDAs have been the workhorses that enable spin-exchange optical pumping of 129Xe in situ at the MRI laboratory. However, the 500–1000 GHz FWHM bandwidth of a typical high power LDA is a poor match to the 50 GHz pressure broadened
Rb absorption line. Additionally, the high-intensity off resonant light produces heating in the OPSE cell which may be detrimental to both wall coatings and makes control of the optimum Rb density in the cell difficult. These problems have motivated the development of frequency narrowed external cavity high power diode lasers which are more suited for production of laser-polarized 129Xe. Work at Michigan and Wisconsin has successfully produced 1–2 W of narrowed diode light in a 20–80 GHz bandwidth [71, 72]. This work is currently being extended to higher power devices, including the very promising results of 15 W in a 50 GHz FWHM line [73] and 18 W in an 80 GHz FWHM line [74].

Calculations of the 129Xe polarization as a function of laser linewidth are shown in

Figure 6.1: Calculated steady-state 129Xe polarization as a function of LDA linewidth for 15 W of laser power. The operating pressure, T_{wall}, and geometry are typical for the cells used in this experiment. A Lorentzian laser lineshape was assumed. The width parameter of a typical Optopower LDA is noted above for comparison.
The operating pressure, T_{wall}, and geometry of the simulation cell are typical for the cells used in experiments in this thesis, and we assume 15 W of laser power penetrates into the cell. The simulations suggest that narrowing the spectral profile of high power diode lasers to roughly 50 GHz will provide an increase in 129Xe polarization of roughly a factor of 3 over the broadband case, with no change in polarizer cell operation.

6.1.3 Polarizer automation

One of the most tedious aspects of running the polarizer is the manual operation of the many valves involved in the polarization and accumulation process. Currently, the operation of these valves and metering of gases adds about 50 seconds of dead time to the polarization cycle, and precludes unattended operation. The ability to automatically cycle the polarizer will allow exploration of a much broader OPSE parameter space. Operation at low xenon pressure and rapid spin-exchange rates (i.e., high cell temperature) can be explored since automated accumulation will make rapid cycling for large number of accumulation cycles feasible.

One of the most dramatic gains in 129Xe polarization attainable with an automated system comes from the use of liquid helium to cool the cryotrap. At LHe temperatures, 129Xe ice relaxation times of order $T_{\text{ice}} \sim 500$ hours have been measured [76], and permitting very long 129Xe-ice accumulation times. This would allow the polarization stage to be operated at very low cell pressure (e.g., 150 Torr Xe) and resultant high polarization. Calculations of the 129Xe polarization as a function of laser linewidth are shown in figure 6.2. The xenon pressure has been reduced to 100 Torr (0.13 amagat per batch) and the temperature increased to 125 °C. The high operating temperatures mean shorter spin-up times, and operation at these low xenon pressures is only practical if the system can be cycled rapidly, in an automated fashion. Although only 0.13 amagat of xenon is produced per batch in this configuration, the automated system could accumulate polarized 129Xe for an entire week before relaxation in the ice became significant at these temperatures. Again, the use of a narrowed diode light source in this low pressure configuration suggests significant gains. The simulations suggest that operation of the polarizer in the low xenon pressure regime with an LDA narrowed to roughly 50 GHz will result in a 129Xe polarization of nearly 70%. Even with our existing laser system, 129Xe polarizations of approximately
20% are attainable with 100 Torr of xenon.

Pneumatic rack-and-pinion actuators have already been adapted in our lab to operate the glass valves of the polarizer. Full automation should be relatively simple to implement, requiring computer operation and the addition of several pressure gauges as process monitors to ensure fail-safe unattended operation.

6.1.4 Recovery of xenon

The breathing mixture exhaust from the animal contains Xe, O₂, CO₂, N₂, anesthesia gases and H₂O vapor. Currently, the anesthesia gases are scavenged by an activated charcoal filter, and the remainder of the gas vented to atmosphere because the current cost of natural
xenon is relatively inexpensive at roughly $12 per liter. Although the cost of isotopically enriched xenon (85% 129Xe) is several hundred dollars per liter, the nearly four-fold increase in delivered magnetization attainable becomes economically feasible if the xenon can be recovered after use. The same increase in resolution to 10 µL can be obtained with use of 85% enriched xenon polarized to 9.5%. A brief outline of a method for reclaiming the xenon from exhausted breathing gases is now described. Volatile substances such as Halothane can easily be removed with a cold trap. The critical pressure and temperature of xenon is 55 atm and 16 °C. The critical temperatures for N_2 and O_2 at this pressure are -147 and -117 °C, respectively. If the gas mixture is compressed to 55 atm and cooled below 16 °C, only xenon will liquefy and thus easily reclaimed.

6.2 Conclusion

The 129Xe magnetic resonance tracer method described in this thesis may prove to be a robust and broadly applicable method for non-invasive, high-resolution tomographic measurement of tissue perfusion. Increases in 129Xe polarization via the schemes described above will allow some key questions to be addressed by way of increased NMR signal. Of particular importance for rCBF measurement in various brain tissues are the identification of the 129Xe resonances observed in the brain. It may be possible to assign these multiple resonances based on both their in vivo dynamics and by high resolution chemical-shift imaging. Similar chemical shift structure has been observed in 129Xe spectra obtained from the human head [137], implying that the 129Xe magnetic resonance tracer method may be directly applicable to studies in humans, thus emphasizing the importance of our method. Automation of the polarization and accumulation stage as described above will allow the accumulation of the large volumes (i.e., tens of Liters) of polarized 129Xe needed for detailed human study.

The possibility of low field imaging with laser-polarized noble gases should not be overlooked. Results obtained at low field (i.e., 0.003–0.1 T) [200, 201] suggest many new MRI applications including low-cost tabletop MRI instruments. As discussed in Chapter 3, the polarizer system as described in this thesis is easily adaptable for stand-alone operation in a low magnetic field environment.
The large quantities of highly polarized 129Xe produced by the apparatus of this thesis have additional applications beyond the realm of in vivo MRI. The study of xenon-protein interactions by NMR is greatly enhanced by the use of laser-polarized 129Xe [202]. We have performed preliminary work to study the cross-polarization between 129Xe and protein protons by developing a system for the study of laser-polarized 129Xe in cross linked bovine serum albumin [203]. Polarized 129Xe targets for neutron scattering [204], and the production of polarized 129Xe ice for sensitive searches of macroscopic spin-dependent forces [205-207] are applications for which an automated 129Xe polarizer as described in this dissertation may make significant impact.
Appendix A

NMR Imaging

This section is a brief overview of the basic physics of NMR and its application to the imaging techniques known as MRI. The details presented here are limited to the techniques used in this thesis, and a more complete discussion is found in the literature [10, 208-211].

A.1 Fundamentals

NMR is a technique for manipulating the magnetic moment of a nuclear system that possesses a non-zero spin angular momentum. A free induction decay (FID) can be evoked from a spin system in response to an applied radio-frequency pulse, and the precessing magnetization detected [212-214]. The goal of NMR imaging is the reconstruction of an image of the nuclear spin density from the detected NMR signal. In order to more easily discuss the fundamentals of the relationship between the detected NMR signal and the formation of an image, nuclear spin relaxation is ignored in the following discussion. The equation of motion for an ensemble of magnetic moments in a static magnetic field neglecting relaxation is simply

\[
\frac{dM}{dt} = \gamma M \times B,
\]

where \(M \) is the magnetic moment per unit volume (i.e., the magnetization), and \(\gamma \) is the gyromagnetic ratio [197]. With no loss of generality, the orientation of \(B \) is specified to lie along the \(z \)-direction, \(B = B_0 \mathbf{z} \). The solution to equation A.1 in this case corresponds to \(M \).
precessing about \(B \) at the Larmor frequency,

\[\omega_0 = \gamma B_0. \]

(A.2)

In all of the imaging methods described here, a complex signal \(S(t) \) results from a spin system in response to an applied resonant rf pulse. In the presence of an additional magnetic field gradient applied along \(z, \ G = \nabla B_z \), the Larmor frequency becomes a function of position,

\[\omega(r) = \gamma(B_0 + G \cdot r) \]

(A.3)

where \(G \cdot r \) is simply the additional magnetic field at position \(r \). This linear relationship between the Larmor frequency and the nuclear spin position, \(r \), was first exploited by Lauterbur in 1973 [215]. All NMR imaging methods use magnetic field gradients in addition to \(B_0 \) to “encode” the spatial coordinates of the sample.

A.2 The detected signal and the Fourier relationship

For a pickup coil placed with its symmetry axis transverse to \(B_0 \), the induced signal voltage in the receiver coil is proportional to the precessing transverse magnetization. The signal arising from volume element \(dV \) containing a local spin-density \(\rho(r) \) precessing in a magnetic gradient is from equation A.3

\[dS(G, t) \propto dV \rho(r) e^{i\gamma B_0 t} e^{i\gamma(G \cdot r)t}. \]

(A.4)

The detection of transverse magnetization is accomplished with a heterodyne technique in which the signal from the coil is mixed with a reference oscillator. In general, the reference oscillator can be set so that signal from the \(\gamma B_0 \) term in equation A.4 can be neglected. The total signal in the pickup coil is obtained from integrating equation A.4 across the object,

\[S(G, t) = \iint \rho(r) e^{i\gamma(G \cdot r)t} dr. \]

(A.5)
In general, the amplitude of the spatial encoding gradients G is time-dependent, and the product $G \cdot r$ is an integral over time. Following Mansfield [216] the wave vector is defined

$$k = \frac{\gamma}{2\pi} \int_0^t G(t')dt',$$ \hspace{1cm} (A.6)

where $G(t')$ is the time-dependent spatial encoding gradient. Rewriting equation A.5 in terms of k,

$$S(k) = \int \int \rho(r)e^{2\pi ik(t') \cdot r}dr,$$ \hspace{1cm} (A.7)

which is related to the spatial spin density by the inverse Fourier transform

$$\rho(r) = \int \int S(k)e^{-2\pi ik(t') \cdot r}dk.$$ \hspace{1cm} (A.8)

The spatial spin density at any location can be obtained as the inverse Fourier transform of the signal $S(k)$. This is the fundamental relationship of all Fourier-based NMR imaging methods. It should be noted that the voltage induced in the receiver coil is typically acquired via computer, and is digitized and represented in a finite number of data points. All the Fourier transforms applied to the sampled data are thus computed as discrete Fourier transforms (DFTs).

The space spanned by k is known in MRI literature as “k-space” [217, 218]. Since the acquired time-domain signal is discretely sampled, k-space is spanned by discrete points. The choice of the time-dependence and amplitude of the imaging gradients determine the path through k-space, since k (from equation A.6) is determined by the time integrals of the applied gradients. The difficulty and art of forming an image is to sample a sufficient part of k-space to allow $\rho(r)$ to be reconstructed, with the greatest signal-to-noise, and in the least time. Many ways of sampling k-space are used, and the imaging methods used in this thesis are now briefly outlined.
A.3 Two-dimensional projection reconstruction imaging

The projection-reconstruction (PR) technique is the first form of NMR imaging, and was introduced by Lauterbur in 1973 [215]. This imaging method is similar to X-ray CT in which a tomographic image is reconstructed from a series of 1D projections.

The NMR spectrum of an object measured in the presence of a linear magnetic-field gradient is a one-dimensional projection of an object onto the direction of the applied gradient. If the FID is acquired with the imaging gradient \(G \) applied in an arbitrary direction, a single radial line in \(k \)-space is sampled. In the 2D PR method, the imaging gradient \(G \) is varied such that \(k \)-space is sampled in a polar raster, i.e., the planar angle and magnitude are given according to

\[
\phi = \tan\left(\frac{G_y}{G_x}\right) |G| = \sqrt{G_x^2 + G_y^2}. \tag{A.9}
\]

As the polar angle varies, a \(k \)-space is sampled along radial lines from the origin at an angle \(\phi \) [215]. A set of FIDs is acquired with different values of \(\phi \) which span polar space from 0 to \(2\pi \) (figure A.1). Assuming a two-dimensional spin-distribution, \(\rho(x,y) \), the detected signal (from equation A.7) is

\[
S(k, \phi) = \int_{-a/2}^{a/2} \int_{-\infty}^{\infty} \rho(x, y) e^{2\pi i k \cdot r} \, dx \, dy \, dz, \tag{A.10}
\]

where the outer integral is just the process of averaging across a slice of sample (of thickness \(a \)). In order to reconstruct \(\rho(x,y) \) from \(S(k, \phi) \), the inverse 2D Fourier transform (equation A.8) is rewritten in polar coordinates,

\[
\int_{-a/2}^{a/2} \rho(x, y) \, dz = \int_0^{k_{max}} \int_0^{\pi} S(k, \phi) e^{-2\pi i k \cdot r} \, |k| \, dk \, d\phi. \tag{A.11}
\]

The \(dk \) integral of equation A.11 is the one-dimensional radial projections \(\rho \phi(r) \),

\[
\int_{-a/2}^{a/2} \rho \phi(r) \, dz = \int_{-k_{max}}^{k_{max}} S(k, \phi) e^{-2\pi i k r} \, |k| \, dk, \tag{A.12}
\]
where r is the component of radial displacement along the gradient direction. In practice, the gradient is swept to vary ϕ, and for each value of ϕ the projection $\rho_{\phi}(r)$ is calculated from the time-domain data by 1D FT. The 2D image is reconstructed from the set of $\rho_{\phi}(r)$ using one of the several techniques for reconstructing images from one-dimensional projections developed for x-ray tomography [219-221]. The PR images in this thesis were processed using the iterative convolution back-projection method [220].

A.4 Spin-warp/gradient echo imaging

Fourier imaging [222] is the most widespread class of NMR imaging methods. Fourier imaging and PR imaging differ primarily in the way k-space is sampled; Fourier imaging methods sample k-space uniformly on a cartesian grid, while sampling in the PR method is concentrated near $k = 0$. Spin-warp imaging [223] is the most common variant of Fourier imaging. As in section A.3, when a FID is recorded in the presence of a gradient (the “read” gradient), a single line in k-space is acquired. In two-dimensional spin warp imag-
ing an additional gradient is applied perpendicular to the frequency-encode gradient, prior to the signal readout. This results in a phase modulation (or “warp”) to the signal dependent on the position of the spin-density in this perpendicular direction. This gradient is known as the phase-encode gradient. For each measurement, the phase-encode gradient takes a different value, allowing a different line in k-space to be acquired. From equation A.7, the detected signal is

$$S(k_x, k_y) = \int_{-a/2}^{a/2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, y) e^{2\pi i (k_x x + k_y y)} dx dy dz, \quad (A.13)$$

and the image is reconstructed by inverse Fourier transformation of the k-space data,

$$\int_{-a/2}^{a/2} \rho(x, y) dz = \int_{-k_{max}^x}^{k_{max}^x} \int_{-k_{max}^y}^{k_{max}^y} S(k_x, k_y) e^{-2\pi i (k_x x + k_y y)} dk_x dk_y. \quad (A.14)$$

Typically, the detected signal in spin-warp imaging is not the FID but is a gradient echo. In the gradient echo method, a negative prephase in the readout direction shifts the origin of k-space away from $k = 0$ (see figure A.2), allowing more complete sampling of the k-space plane. After phase encoding, a “gradient echo” is produced during readout by allowing the spins to precess in a read gradient of opposite sign to that applied during the prephase, and the signal is detected as the spins regain coherence [223]. The spin warp imaging technique is the standard imaging technique used today for 1H imaging, however echo imaging methods require that transverse magnetization relaxation time, T_2, be sufficiently long so that the spins rephase before the signal decays and an echo is physically obtainable.

A.5 Chemical shift imaging

Spectroscopic imaging is a combination of spatial and spectral imaging. Combining spatial localization with spectroscopy, an NMR spectrum is obtained at each spatial position, and an image of each chemical-shift component may be produced. This imaging technique is known as chemical shift imaging (CSI) [224-228], and is typically performed by spatially encoding the NMR signal prior to reading in the absence of a magnetic field gradient. If the local 2D spin-density now includes a spatially varying frequency distribution,
\(\rho(x,y,\omega) \), the detected signal (from equation A.5) is

\[
S(t) = \iiint \rho(x, y, \omega) e^{i\gamma G_x x + G_y y} e^{i\omega t} e^{-dxyd\omega},
\]

(A.15)

where \(\omega \) is the chemical shift offset frequency with respect to the demodulation frequency \(\omega_0 \). As above, rewriting equation A.15 in \(k \)-space,

\[
S(k_x, k_y, k_\omega) = \iiint \rho(x, y, \omega) e^{2\pi i (k_x x + k_y y + k_\omega \omega)} dx dy dz \omega,
\]

(A.16)

where \(k \) is as in equation A.6, and \(k_\omega \) is defined as

\[
k_\omega(t) = \frac{t}{2\pi}.
\]

(A.17)
The signal spans three-dimensional k-space; the position in (k_x, k_y) is determined by the time integral of the phase-encode gradients G_x and G_y applied prior to readout, and k_ω is sampled as a function of time during readout with no applied gradients. By sampling the FID after a phase-encoding and in the absence of any applied gradients, information about spatial distribution can be separated from information about chemical shift. This is possible because a pulsed gradient encodes positional information in the initial phases of FID but does not affect the frequency distribution in space after the gradient has been turned off and spins precess freely. The net effect is to measure the Fourier transform of the spatial and frequency distribution of the spins, which is then inverted to obtain the spatial distribution of chemical shifts over the sample. The 2D spectroscopic image is obtained by 3D Fourier transform,

$$\int_{-a/2}^{a/2} \rho(x, y, \omega) dz = \int \int \int S(k_x, k_y, k_\omega) e^{-2\pi i (k_x x + k_y y + k_\omega \omega)} dk_x dk_y dk_\omega.$$

Unlike imaging sequences where the presence of a read gradient allows an entire k-space line to be acquired each experiment, in CSI the FID is acquired in the absence of a read gradient (the presence of which would disperse frequency information). Each point in k-space is acquired with a separate phase encode step, so that a two-dimensional $N \times N$ pixel CSI image requires N^2 phase encode steps, increasing the total imaging time by a factor of N compared to gradient echo sequences. In practice, this increase in acquisition time limits CSI imaging to two spatial dimensions.
BIBLIOGRAPHY

[10] F W Wehrli, “From NMR diffraction and zegmatography to modern imaging and

[34] E S Hrycyshyn and I Krause, “Inelastic collisions between excited alkali atoms and

[70] R W Mair, D G Cory, S Peled et al., “Pulsed-field-gradient measurements of time-

[74] T G Walker (private communication).

[107] T R Stengle, S M Hoesseini, H G Basiri et al., “NMR chemical shifts of xenon in

[119] P Anversa, C Beghi, Y Kikkawa et al., “Myocardial infarction in rats: infarct size,

[142] B Eklof, N A Lassen, L Nilsson et al., “Regional cerebral blood flow in the rate measured by the tissue sampling technique; a critical evaluation using four indicators \(^{14} \text{C-antipyrine}, ^{14} \text{C-ethanol,} ^{3} \text{H-water and} ^{133} \text{xenon}, \)” Acta Physiol. Scand. 91, 1-10 (1974).

129 (1955).

[177] H H Donaldson, The rat; reference tables and data for the albino rat (Mus norvegicus albinus) and the Norway rat (Mus norvegicus) (Wistar Institute of Anatomy and Biography, Philadelphia, 1915).

[187] D Gur, H Yonas, D Hervert et al., “Xenon enhanced dynamic computed

[188] D Gur, H Yonas, and W F Good, “Local cerebral blood flow by xenon-enhanced CT:

[191] V Haughton, J Donegan, P Walsh et al., “Clinical cerebral blood flow measurement

[192] F Kelcz, S K Hilal, P Hartwell et al., “Computed tomographic measurement of the
xenon brain blood partition coefficient and implication of regional cerebral blood flow: A

assessed by 15O-H2O positron emmision tomography: Implications for hyperpolarized

[197] A Abragam, *Principles of nuclear magnetism* (Oxford University Press, New York,
1961).

COLOPHON

This thesis was typeset in Adobe Framemaker 5.5.6 on a Macintosh 8500-132 with 112 MB of RAM. The text face is Minion, a neohumanist face designed by Robert Slimbach and issued in digital form by Adobe Systems, Mountain View California in 1989. It is supplemented here with Mathematical Pi, designed at Linotype-Hell AG and issued in digital form by Adobe Systems in 1990, and by Symbol, designed and issued by Design Science, Inc. in 1992. Figures are set in Helvetica Neue, issued in digital form by Linotype-Hell AG in 1988.